Publications

Refine Results

(Filters Applied) Clear All

Suppressing relaxation in superconducting qubits by quasiparticle pumping

Summary

Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducting errors: instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. in the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density reesults in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variablity.
READ LESS

Summary

Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to...

READ MORE

The flux qubit revisited to enhance coherence and reproducibility

Summary

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of 40 us at its flux-insensitive point. Qubit relaxation times 1 T across 22 qubits of widely varying designs are consistently matched with a single model involving resonator loss, ohmic charge noise, and 1/f flux noise, a noise source previously considered primarily in the context of dephasing, with temporal variation in 1 T attributed to quasiparticles. We furthermore demonstrate that qubit dephasing at the flux-insensitive point is dominated by residual thermal photons in the readout resonator. The resulting photon shot noise is mitigated using a dynamical decoupling protocol, resulting in T2 ~ 85 us , approximately the 1 2T limit. In addition to realizing a dramatically improved flux qubit, our results uniquely identify photon shot noise as limiting 2 T in contemporary state-of-art qubits based on transverse qubit-resonator interaction.
READ LESS

Summary

The scalable application of quantum information science will stand on reproducible and controllable high-coherence quantum bits (qubits). In this work, we revisit the design and fabrication of the superconducting flux qubit, achieving a planar device with broad frequency tunability, strong anharmonicity, high reproducibility, and relaxation times in excess of 40...

READ MORE

Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators

Published in:
New J. Phys., Vol. 15, 2013, 123011.
Topic:
R&D group:

Summary

Electrical resonators are widely used in quantum information processing, by engineering an electromagnetic interaction with qubits based on real or virtual exchange of microwave photons. This interaction relies on strong coupling between the qubits' transition dipole moments and the vacuum fluctuations of the resonator in the same manner as cavity quantum electrodynamics (QED), and has consequently come to be called 'circuit QED' (cQED). Great strides in the control of quantum information have already been made experimentally using this idea. However, the central role played by photon exchange induced by quantum fluctuations in cQED does result in some characteristic limitations. In this paper, we discuss an alternative method for coupling qubits electromagnetically via a resonator, in which no photons are exchanged, and where the resonator need not have strong quantum fluctuations. Instead, the interaction can be viewed in terms of classical, effective 'forces' exerted by the qubits on the resonator, and the resulting resonator dynamics used to produce qubit entanglement are purely classical nature. We show how this type of interaction is similar to that encountered in the manipulation of atomic ion qubits, and we exploit this analogy to construct two-qubit entangling operations that are largely insensitive to thermal or other noise in the resonator, and to its quality factor. These operations are also extensisble to larger numbers of qubits, allowing interactions to be selectively generated among any desired subset of those coupled to a single resonator. Our proposal is potentially applicable to a variety of physical qubit modalities, including superconducting and semiconducting solid-state qubits, trapped molecular ions, and possibly even electron spins in solids.
READ LESS

Summary

Electrical resonators are widely used in quantum information processing, by engineering an electromagnetic interaction with qubits based on real or virtual exchange of microwave photons. This interaction relies on strong coupling between the qubits' transition dipole moments and the vacuum fluctuations of the resonator in the same manner as cavity...

READ MORE

Flux-charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors

Published in:
New J. Phys., Vol. 15, 2013, 105017.
Topic:
R&D group:

Summary

It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between states differing by plus or minus 2 pi in their relative phase between the wire's ends. Over the last several decades, many deviations from conventional bulk superconducting behavior have been observed in ultra-narrow superconducting nanowires, some of which have been identified with QPS. While at least some of the observations are consistent with existing theories for QPS, other observations in many cases point to contradictory conclusions or cannot be explained by these theories. Hence, our understanding of the nature of QPS, and its relationship to the various observations, has remained incomplete. In this paper we present a new model for QPS which takes as its starting point an idea originally postulated by Mooij and Nazarov (2006 Nature Phys. 2 169): that flux-charge duality, a classical symmertry of Maxwell's equations, can be used to relate QPS to the well-known Josephson tunneling of Cooper pairs. Our model provides an alternative, and qualitatively different, conceptual basis for QPS and the phenomena which arise from it in experiments, and it appears to permit for the first time a unified understanding of observations across several different types of experiments and materials systems.
READ LESS

Summary

It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between...

READ MORE

Quantum simulator of an open quantum system using superconducting qubits: exciton transport in photosynthetic complexes

Published in:
New J. Phys., Vol. 14, October 2012, 105013.

Summary

Open quantum system approaches are widely used in the description of physical, chemical and biological systems. A famous example is electronic excitation transfer in the initial stage of photosynthesis, where harvested energy is transferred with remarkably high efficiency to a reaction center. This transport is affected by the motion of a structured vibrational environment, which makes simulations on a classical computer very demanding. Here we propose an analog quantum simulator of complex open system dynamics with a precisely engineered quantum environment. Our setup is based on superconducting circuits, a well established technology. As an example, we demonstrate that it is feasible to simulate exciton transport in the Fenna-Matthews-Olson photosynthetic complex. Our approach allows for a controllable single-molecule simulation and the investigation of energy transfer pathways as well as non-Markovian noise-correlation effects.
READ LESS

Summary

Open quantum system approaches are widely used in the description of physical, chemical and biological systems. A famous example is electronic excitation transfer in the initial stage of photosynthesis, where harvested energy is transferred with remarkably high efficiency to a reaction center. This transport is affected by the motion of...

READ MORE

Loading of a surface-electrode ion trap from a remote, precooled source

Published in:
Phys. Rev. A, At. Mol. Opt. Phys., Vol. 86, No. 1, 20 July 2012, 013417.
Topic:
R&D group:

Summary

We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ~10^6 neutral 88Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with a resonant laser into the trap region where they are subsequently photoionized and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present studies of the loading process and show that our technique achieves ion loading into a shallow (15 meV depth) trap at rates as high as 125 ions/s while drastically reducing the amount of metal deposition on the trap surface as compared with direct loading from a hot vapor. Furthermore, we note that due to multiple stages of isotopic filtering in our loading process, this technique has the potential for enhanced isotopic selectivity over other loading methods. Rapid loading from a clean, isotopically pure, and precooled source may enable scalable quantum-information processing with trapped ions in large, low-depth surface-trap arrays that are not amenable to loading from a hot atomic beam.
READ LESS

Summary

We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ~10^6 neutral 88Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with...

READ MORE

Metastable superconducting qubit

Published in:
Phys. Rev. Lett., Vol. 104, No.2, 11 January 2010, 027002.

Summary

We propose a superconducting qubit design, based on a tunable rf SQUID and nanowire kinetic inductors, which has a dramatically reduced transverse electromagnetic coupling to its environment, so that its excited state should be metastable. If electromagnetic interactions are in fact responsible for the current excited-state decay rates of superconducting qubits, this design should result in a qubit lifetime orders of magnitude longer than currently possible. Furthermore, since accurate manipulation and readout of superconducting qubits is currently limited by spontaneous decay, much higher fidelities may be realizable with this design.
READ LESS

Summary

We propose a superconducting qubit design, based on a tunable rf SQUID and nanowire kinetic inductors, which has a dramatically reduced transverse electromagnetic coupling to its environment, so that its excited state should be metastable. If electromagnetic interactions are in fact responsible for the current excited-state decay rates of superconducting...

READ MORE

High-fidelity quantum operations on superconducting qubits in the presence of noise

Published in:
Phys. Rev. Lett., Vol. 101, No. 7, 15 August 2008, 070501.

Summary

We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing arbitrary noise-induced dephasing and decay, and demonstrate in this system a set of universal gate operations with O(10^-5) error probabilities in the presence of experimentally measured levels of 1=f noise. We then add relaxation and quantify the decay times required to maintain this error level.
READ LESS

Summary

We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing...

READ MORE

Showing Results

1-8 of 8