Publications
A new approach for designing safer collision avoidance systems
Summary
Summary
The Traffic Alert and Collision Avoidance System (TCAS) has been shown to significantly reduce the risk of mid-air collision and is currently mandated worldwide on all large transport aircraft. Engineering the collision avoidance logic was a very costly undertaking that spanned several decades. The development followed an iterative process where...
Partially-controlled Markov decision processes for collision avoidance systems
Summary
Summary
Deciding when and how to avoid collision in stochastic environments requires accounting for the likelihood and relative costs of future sequences of outcomes in response to different sequences of actions. Prior work has investigated formulating the problem as a Markov decision process, discretizing the state space, and solving for the...
Robust airborne collision avoidance through dynamic programming
Summary
Summary
The Traffic Alert and Collision Avoidance System (TCAS) uses an on-board beacon radar to monitor the local air traffic and logic to determine when to alert pilots to potential conflict. The current TCAS logic was the result of many years of development and involved the careful engineering of many heuristic...
Robustness of optimized collision avoidance logic to modeling errors
Summary
Summary
Collision avoidance systems, whether for manned or unmanned aircraft, must reliably prevent collision while minimizing alerts. Deciding what action to execute at a particular instant may be framed as a multiple-objective optimization problem that can be solved offline by computers. Prior work has explored methods of efficiently computing the optimal...
A decision-theoretic approach to developing robust collision avoidance logic
Summary
Summary
All large transport aircraft are required to be equipped with a collision avoidance system that instructs pilots how to maneuver to avoid collision with other aircraft. The uncertainty in the behavior of the intruding aircraft makes developing a robust collision avoidance logic challenging. This paper presents an automated approach for...
Improved Monte Carlo sampling for conflict probability estimation
Summary
Summary
Probabilistic alerting systems for airborne collision avoidance often depend upon accurate estimates of the probability of conflict. Analytical, numerical approximation, and Monte Carlo methods have been applied to conflict probability estimation. The advantage of a Monte Carlo approach is the greater flexibility afforded in modeling the stochastic behavior of aircraft...
Model-based optimization of airborne collision avoidance logic
Summary
Summary
The Traffic Alert and Collision Avoidance System (TCAS) is designed to reduce the risk of mid-air collisions by providing resolution advisories to pilots. The current version of the collision avoidance logic was hand-crafted over the course of many years and contains many parameters that have been tuned to varying extents...