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EXECUTIVE SUMMARY

The Traffic Alert and Collision Avoidance System (TCAS), currently mandated on all large trans-
port aircraft, has been shown to significantly reduce the risk of mid-air collision. TCAS uses an
on-board radar to monitor the local air traffic and logic to determine when to alert pilots to po-
tential conflict. If deemed necessary to prevent collision, TCAS will issue a resolution advisory to
the pilots to climb or descend at a particular rate.

Developing robust collision avoidance logic that reliably prevents collision without excessive
alerting is challenging due to sensor error and uncertainty in pilot response and, consequently, the
future paths of the aircraft. The current TCAS logic was the result of many years of development
and involved the careful engineering of many heuristic rules specified in pseudocode. Unfortunately,
due to the complexity of the logic, it is difficult to revise to accommodate the evolution of the
airspace and the introduction of new technologies and procedures.

An alternative to developing collision avoidance logic directly is to model the problem to be
solved and then apply computational techniques to automatically derive the optimal logic with
respect to a set of performance metrics. One advantage of this approach is that it is much easier
to specify performance metrics and develop models of aircraft behavior than to develop robust
pseudocode. The difficult task of ensuring that the logic performs well in all possible encounter
situations is left to computers, which are better equipped than human designers to reason about the
low-probability events that can occur during the course of an encounter that can result in collision.

The computational technique that enables the efficient optimization of the collision avoidance
logic is called dynamic programming (DP). Although DP was originally developed over fifty years
ago and has been applied to a wide variety of different problems, it has not been applied to collision
avoidance until recently. In FY09, the TCAS Program Office sponsored an initial investigation into
this method, and the research was summarized in Project Report ATC-360. While the results were
promising, the performance was limited by assumptions made by the model.

This report discusses work in FY10 on relaxing previous assumptions. The new model allows
advisories to be strengthened and reversed, as with the existing version of TCAS. Because it not
possible to know exactly the future trajectories of aircraft, the provision for changing the initial
advisory significantly reduces collision risk. Motion in three spatial dimensions is now captured by
the model, allowing the logic to better determine when an alert is necessary. This report introduces
probabilistic pilot response models, which can result in logic that is more robust to variability in
response. The logic now uses explicit models to account for sensor noise, resulting in improved
performance with realistic surveillance systems. This report shows how to coordinate maneuvers
between aircraft and how to resolve threats from multiple aircraft.

The logic optimized by DP significantly outperforms TCAS in simulation according to the
standard safety and operational performance metrics. Both the DP logic and the TCAS logic
were evaluated on the same collection of encounters generated by a high-fidelity encounter model.
Millions of simulated encounters show that the DP logic provides a lower probability of mid-air
collision while reducing the alert rate. Although some further development is required, the DP
approach appears viable for developing robust collision avoidance logic.
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1. INTRODUCTION

The Traffic Alert and Collision Avoidance System (TCAS), currently mandated on all large trans-
port aircraft, has been shown to significantly reduce the risk of mid-air collision. TCAS uses an
on-board beacon radar to monitor the local air traffic and logic to determine when to alert pilots
to potential near mid-air collision (NMAC). If deemed necessary to prevent collision, TCAS will
issue a resolution advisory to the pilots to climb or descend at a particular rate.

The logic used to determine when to issue an alert and which advisory to issue was the
result of decades of development. The logic is specified using pseudocode that has been validated
through rigorous simulation studies to ensure that the system provides a high degree of safety
while remaining operationally acceptable. Due to the complexity of the pseudocode, it is difficult
to modify the logic. Much of the logic is likely to require re-engineering to accommodate new
surveillance systems and next-generation air traffic control procedures.

This report explores a new approach to developing collision avoidance logic that has the
potential to significantly improve safety while reducing the rate of unnecessary alerts. The approach
involves leveraging recent algorithmic advances and modern computing power to optimize the logic
based on probabilistic models of aircraft behavior and performance metrics. The probabilistic
models can be modified to accommodate the anticipated evolution of the airspace, and the logic
may be re-optimized as necessary with little development effort.

1.1 DESIGN CONSIDERATIONS

The following design considerations guided the development of the proposed approach.

• Safety performance. The primary objective of a collision avoidance system is to increase
safety. Because flight tests can only test the system in relatively few encounter situations,
much of the analysis required to prove the safety of the system must be done in simulation
using an encounter model. During the development of TCAS, the NMAC rate was used
as a safety performance metric. Historically, NMACs have been defined to occur when two
aircraft come within 500 ft horizontally and 100 ft vertically. One of the primary goals of this
research is to develop a system that has an NMAC rate lower than that of the existing version
of TCAS. As will be discussed later, there are other ways to assess the safety of a collision
avoidance system other than estimating NMAC rate.

• Operational performance. A collision avoidance system should not interfere with normal, safe
flight operations. Hence, the system should avoid issuing unnecessary alerts. An excessive
alert rate can result in decreased efficiency, collision with secondary aircraft, and pilot non-
compliance. In order to reliably prevent collision, the system will need to alert in situations
where it might later be found unnecessary. Because it is impossible to perfectly predict how
an encounter will evolve, the system will need to act conservatively. Carefully balancing the
operational considerations with safety considerations is an important part of developing a
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collision avoidance system. A goal of this research is to develop a system that provides a
lower alert rate than TCAS while enhancing safety.

• Onboard computation. TCAS currently makes decisions once per second, and a future system
will likely be required to make decisions at least as frequently. Many of the algorithms
suggested in the literature are not yet suitable for real-time use, but the method pursued in
this report provides the required performance using current technology. The implementation
of the proposed system is capable of making decisions in less than a millisecond on a single
processor, which enables fast-time simulation of the system on millions of encounters during
development.

• Coordination. If two TCAS-equipped aircraft encounter each other, they will coordinate their
advisories over a low bandwidth communication channel. This coordination aims to prevent,
for example, both aircraft from climbing into each other. A new system should also coordinate
advisories to enhance safety. Although better coordination may be achieved through a higher
bandwidth data link, this report assumes only the existing communication channel currently
used by TCAS will be available for a new system.

• Unequipped aircraft. TCAS will avoid aircraft that are not TCAS-equipped, so long as they
have a transponder. Although TCAS is not able to coordinate with non-TCAS aircraft, it
still provides a significant safety benefit. Similarly, the new system must prevent collision
even when the intruder is not equipped with a collision avoidance system.

• Interoperability. The introduction of a new collision avoidance system is likely to be gradual.
Hence, any new system should be capable of interoperating with legacy versions of TCAS.
Although the design proposed in this report allows interoperability, evaluating this will be
the focus of future work.

• Surveillance compatibility. TCAS was designed for a particular surveillance system. Adjusting
the existing logic to accommodate new surveillance systems, such as those that leverage global
positioning system information, is nontrivial. Since surveillance technology is expected to
evolve, the new collision avoidance logic should be sufficiently flexible to accommodate a
wide variety of different surveillance systems.

• Aircraft performance constraints. The TCAS collision avoidance logic was intended primarily
for large transport aircraft with certain capabilities, but the new system should be compatible
with a wider variety of aircraft, including unmanned aircraft and those typically used for
general aviation. Not only should the new system only issue advisories that are feasible for
the aircraft on which it is installed, it should take into consideration the performance limits of
other aircraft when coordinating advisories. For example, if an intruder is known to be unable
to climb quickly, then TCAS may issue a descend advisory earlier than it would otherwise.
Accommodating aircraft performance limitations is not a focus of this report, but it is a
straightforward extension to the proposed method and will be pursued later.

• Extensibility. The airspace will evolve significantly over the next few decades with the intro-
duction of next-generation air traffic control technologies. Any new collision avoidance system
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will need to evolve with the airspace. Changing the TCAS pseudocode can be very difficult
due to the complexity of the logic and the ways in which the various rules and parameters
interact with each other. This report investigates an approach that allows the logic to be
quickly re-optimized in response to changes in the airspace model.

• Validation. Due to its safety-critical nature, a collision avoidance system must be validated to
ensure that the system provides the required level of safety with a high degree of confidence.
The system proposed in this report can be validated using encounter models in Monte Carlo
simulation, as has been done with TCAS. The nature of the approach taken in this report,
however, permits additional, complementary validation techniques to be discussed later.

• Verification. It is important that a manufacturer’s implementation of the logic be verified for
correctness. TCAS implementations are currently verified against a set of test encounters.
The system proposed in this report can also be verified against test encounters. Because the
complexity of the logic can be encoded using numerical lookup tables that can be standardized
and delivered to manufacturers, there is very little code for manufacturers to implement and
hence less opportunity for errors to be introduced.

1.2 BACKGROUND

Developing a robust collision avoidance algorithm that reliably prevents collision without alerting
excessively is challenging due to sensor error and uncertainty in the future behavior of the aircraft.
A wide variety of different collision avoidance algorithms have been proposed, and they differ in
how they predict the motion of aircraft. These methods may be categorized as follows:

• Nominal trajectory propagation. Many collision avoidance systems, including TCAS, propa-
gate the most likely positions of the aircraft into the future. If an intruder is predicted to
come within the NMAC volume or some enlarged conflict zone in the near future, the system
decides that an alert is necessary. The system then predicts the effects of the available ad-
visories and chooses the one that best resolves the NMAC. One problem with this approach
is that it does not explicitly account for low-probability events that can lead to collision. To
make the logic robust to deviations from the nominal predicted trajectories, algorithms that
use this approach must rely upon complex heuristics. [1–4]

• Worst-case trajectory propagation. Other collision avoidance systems examine a range of
possible maneuvers and determine whether any of them results in NMAC. One disadvantage of
this approach is that it can result in an excessively high alert rate. Excessive alerting can result
in NMACs with third-party aircraft, impaired efficiency, and decreased pilot compliance. [5–7]

• Probabilistic trajectory propagation. This method examines all possible future trajectories and
accounts for their relative likelihood. Nominal and worst-case propagation are special cases
of probabilistic propagation; nominal propagation assigns probability one to the most likely
trajectory and worst-case propagation assigns equal probability to all trajectories. Accounting
for the likelihood of different trajectories can result in robustness against low-probability
hazardous events while maintaining an acceptable alert rate. [8–10]
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Figure 1. Trajectory propagation methods. Nominal trajectory propagation (green) only examines the most
likely trajectory. Worst-case trajectory propagation (red) searches the space of possible trajectories for one
that results in NMAC. Probabilistic trajectory propagation (blue) accounts for the relative likelihood of all
trajectories.

These trajectory propagation methods are illustrated in Fig. 1. Surveys of these methods are found
in [11,12].

Although using a probabilistic model can result in significantly more robust collision avoid-
ance, the majority of the algorithms in the literature use nominal trajectory propagation. With
nominal trajectory propagation, only a single trajectory needs to be modeled, but with probabilistic
trajectory propagation, all trajectories (or a large sample) need to be modeled. Hence, methods
adopting nominal trajectory propagation typically require much less computation.

Several different probabilistic propagation methods have been proposed in the literature,
including analytic, numerical approximation, Monte Carlo, and dynamic programming methods.
The analytic and numerical approximation methods are fast, but they typically require strong
assumptions to be made regarding the model of the aircraft dynamics. Monte Carlo methods are
much more flexible, but many trajectory samples are typically required because NMACs are rare,
although there has been research on ways to improve efficiency [13].

For the development of a future TCAS system, it appears that the best option is to use
dynamic programming. As with Monte Carlo, dynamic programming can accommodate a wide
variety of different models, but it requires relatively little computation during flight. Dynamic
programming does all the intense computation offline during development and stores the results
in a lookup table to be used later. Since dynamic programming requires the state space to be
discretized, one potential limitation is that the number of state variables must be kept manageable
to prevent the number of discrete states from exploding. However, this report shows that by
carefully choosing the representation of the model, the number of discrete states can be kept
manageable.

Collision avoidance algorithms that use probabilistic dynamic models differ in how they use
the relative likelihood of different trajectories to make decisions about when to alert and which
advisory to issue. Many of the existing algorithms convert the trajectory likelihoods into a prob-
ability of NMAC that is then compared against a threshold [14, 15]. Some algorithms alert the
moment the probability of NMAC without evasive maneuvering exceeds some threshold, but there
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are other strategies for delaying alerts. For example, one strategy is to delay alerting until a single
advisory remains whose probability of NMAC is below some threshold.

An alternative to approaches based on NMAC probability thresholds is to define a cost metric
for trajectories and optimize the collision avoidance logic to minimize the expected cost. Under
certain assumptions to be discussed later, dynamic programming can be applied to compute the
expected cost for each action (e.g., no alert, climb, or descend) at each state offline and store the
results in a table. The table can then be used online to determine the best action from the current
state. This report adopts a dynamic programming approach.

1.3 PROPOSED APPROACH

The proposed approach uses a probabilistic model of aircraft behavior and a cost metric to be
optimized. In order to quickly decide what action is best given the history of sensor measurements,
a significant amount of processing is done offline during the development phase. The results are
summarized in large numerical tables that can be distributed to manufacturers and incorporated
into their avionics. During flight, the collision avoidance system consults these tables in real time
to decide which advisory to issue or whether to delay alerting.

1.3.1 Offline Development

The offline development of the system involves specifying a probabilistic dynamic model that cap-
tures the behavior of aircraft during close encounters and the response of pilots to resolution
advisories. The dynamic model may be constructed based on a combination of expert judgment
and recorded data. Because of the influence the dynamic model has on the optimized logic, it is
critical that the model be thoroughly vetted with the development community.

A cost metric must also be specified that balances different safety and operational considera-
tions, such as the alert rate and the NMAC rate. The optimal collision avoidance logic is defined to
be the one that provides the lowest expected cost. The choice of cost function strongly influences
the behavior of the logic. Optimizing the system according to different cost metrics and examining
the resulting behavior in simulation may guide the choice of cost parameters, as will be discussed
later in this report.

If the model and the cost metric meet certain criteria to be discussed later, dynamic pro-
gramming may be applied to recursively compute the expected cost for each action from each
state. These costs are what are stored in the numerical lookup tables to be used in real time to
select actions. Computing these tables is relatively efficient because dynamic programming lever-
ages the structure of the model and cost metric so that every possible future trajectory does not
require explicit enumeration.

1.3.2 Real-Time Usage

At some update rate, the surveillance system will measure the positions of the intruder aircraft.
The current TCAS surveillance system measures range and bearing of the local air traffic and
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decodes the altitude information transmitted by their transponders. Other surveillance inputs,
such as satellite-based position reports, may be used in the future, but this report focuses on the
surveillance data currently provided by the TCAS surveillance system.

The current state of the world cannot be known exactly; it can only be inferred from the
sensor measurements with some degree of confidence. The collision avoidance system updates a
probability distribution over the set of possible states based on the sensor measurements. This
probability distribution is used to compute the current expected costs for the various actions. The
system simply executes the action with the lowest cost.

1.4 RECENT ADVANCES

The general approach pursued in this report was originally proposed in Project Report ATC-
360 [12]. Although this report will review the important concepts from Project Report ATC-360,
the focus will be on recent advances, which include:

• Advisory changes. The previous report assumed that once an advisory is issued, it cannot be
changed. However, depending on how an encounter evolves, TCAS will either strengthen or
reverse the original advisory. Because it is impossible to know exactly the future trajectories
of aircraft, the provision for strengthening and reversing advisories is critical to reducing
collision risk.

• Motion in three spatial dimensions. The model used to derive the logic in the previous
report was essentially two dimensional. This report models aircraft motion in three spatial
dimensions. Enhancing the realism of the model used to optimize the logic results in improved
performance when deployed in the real world.

• Probabilistic pilot response models. The previous report assumed a deterministic pilot re-
sponse to resolution advisories. The response model was based on that used by TCAS, which
assumes that the pilot responds to an initial advisory in exactly 5 s with 1/4 g acceleration.
Because pilots respond to their advisories with variable delay and strength, this report at-
tempts to model this variability explicitly when optimizing the logic. Accounting for the
relative likelihood of different pilot responses improves the robustness of the optimized logic.

• State estimation. The previous report assumed that the current state of the world, which
includes the positions and velocities of the aircraft, is perfectly known. However, the TCAS
sensor is imperfect, and so the state can only be estimated. This report uses a sensor model
and dynamic model together to estimate a probability distribution over states based on sensor
measurements. This distribution is then used to decide when to alert and which advisory
to issue. Leveraging an explicit sensor model allows the logic to be robust against noisy
measurements.

• Coordination. The previous report assumed that the intruder was not equipped with a colli-
sion avoidance system. If both aircraft are equipped with a collision avoidance system, they
can coordinate their advisories over a communication channel to further enhance safety. This
report explains how the logic can be optimized for coordination with other aircraft.
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• Multiple threat encounters. The previous report assumed a single intruder, but as the density
of the airspace increases, encounters with multiple intruder aircraft will become increasingly
likely. This report explains how to accommodate encounter scenarios where multiple aircraft
pose a collision threat.

1.5 OVERVIEW

Section 2 introduces Markov decision processes (MDPs) as a way to model collision avoidance
problems when the aircraft are equipped with (nearly) perfect sensors and discusses one possible
solution method. It discusses an extension to MDPs, called partially observable MDPs (POMDPs),
that incorporates an observation model to account for state uncertainty. The section discusses the
QMDP method for approximating the solution to a POMDP that leverages the solution of the
underlying MDP.

Section 3 discusses how to model a simplified, two-dimensional collision avoidance problem as
an MDP. In this simplified collision avoidance problem there is a single intruder who is not equipped
with a collision avoidance system. Neither aircraft maneuvers horizontally. The own aircraft is
equipped with perfect sensors and the pilot responds deterministically to advisories issued by the
system. The optimal solution to the problem is obtained using dynamic programming (DP). The
section presents an example encounter and various performance assessment results comparing the
DP-derived logic to TCAS in head-on encounters.

Section 4 quantifies the robustness of the DP logic of Section 3 to modeling errors. It presents
the results of evaluating the logic on a three-dimensional white-noise model as well as a higher-
fidelity encounter model with a significantly different model structure. It introduces robust DP as
a technique for making solutions less sensitive to particular choices of dynamic models. A state-
based robustness analysis is performed to estimate the value of performance metrics starting from
arbitrary states in the state space.

Section 5 extends the solution method of Section 3 to encounters in three dimensions and al-
lows both aircraft to maneuver horizontally. To help mitigate the increased computational demands
for a model of higher dimensionality, Section 5 introduces an approach to solving the problem when
only some of the state variables are controllable. The approach involves decomposing the full prob-
lem into controlled and uncontrolled subproblems, both of which are solved separately using DP
algorithms.

Section 6 discusses how to optimize the DP logic of Section 5 using probabilistic pilot response
models in which the future response of the pilot to advisories is uncertain. The section presents
two different pilot response models. Belief state filtering is used to update the belief regarding the
compliance of the pilot to advisories.

Section 7 discusses how to optimize the logic in the presence of state uncertainty due to
sensor noise. The own aircraft is modeled as being equipped with a TCAS-like sensor that receives
measurements of intruder range, bearing, and altitude. The performance of the QMDP method is
compared against TCAS in simulation. The results of a robustness analysis are also shown.
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Section 8 discusses how to optimize the logic when the intruder is equipped with the same
collision avoidance system as the own aircraft. The advisories issued by the systems must be
coordinated so that the aircraft do not accidentally maneuver into each other. When the state is
fully observable, the problem can be modeled as a multi-agent MDP, which can be solved efficiently
using DP. With the introduction of sensor noise, the problem is transformed into a decentralized
POMDP, which can be solved approximately using a number of strategies. Several coordination
strategies are evaluated in simulation.

Section 9 generalizes the logic to handle encounters in which multiple intruder aircraft pose
a threat to the own aircraft. Because adding new state variables for each intruder does not scale,
this section examines different approximation methods, such as command arbitration and utility
fusion, that decompose the full problem into smaller, more manageable subproblems. The section
presents ways to visualize the behavior of the multithreat logic as well as simulation results.

Section 10 concludes the report, summarizing the major contributions, and outlines some
directions for future work.

Appendix A describes the file format used to represent the expected cost table.

Appendix B overviews the Kalman filter and an extension to the Kalman filter, called the un-
scented Kalman filter, to approximate the effects of nonlinear dynamic and measurement functions.
The section discusses the details of the horizontal and vertical filters used in Section 7.
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2. PROBLEM FORMULATION

If a collision avoidance system is equipped with nearly perfect sensors, the problem of collision
avoidance can be framed as a Markov decision process (MDP). In an MDP, the state of the world
is assumed to evolve according to a fixed dynamic model. A solution to an MDP is a strategy that
maximizes performance according to some metric. Due to the assumptions made by the dynamic
model and the performance metric, to be outlined in this section, solutions may be found efficiently
using a computational technique called dynamic programming (DP).

In cases where a collision avoidance system is equipped with noisy sensors, the problem is
better framed as a partially observable Markov decision process (POMDP), which augments the
MDP formulation with an observation model that is used to generate observations based on the
state of the world. This section discusses both MDPs and POMDPs, and later sections will show
how they can be applied to collision avoidance.

2.1 MARKOV DECISION PROCESSES

MDPs have been well studied since the 1950s and have been applied to a wide variety of problems
[16–18]. They require that the dynamic model be Markovian, meaning that the probability of
transitioning to state s′ depends only on the current state s and action a. This probability is denoted
T (s, a, s′), and T is often called the state-transition function. So long as sufficient information about
the problem can be encoded in the state, the Markov assumption is usually valid. The set of possible
states is denoted S and the set of possible actions is denoted A.

Solving an MDP involves searching for a strategy for choosing actions, also called a policy,
that maximizes a performance metric. Although policies can depend upon the entire history of
states and actions, it is well known that under certain assumptions regarding the structure of the
performance metric, it is sufficient to only consider policies that deterministically depend only on
the current state without losing optimality [19]. Given a policy π, the action to execute from state
s is denoted π(s).

There are several common performance metrics, also called optimality criteria, typically used
with MDPs. One common metric is the expected sum of instantaneous reward up to some fixed
horizon. The optimal policy is the one that maximizes this metric. Because collision avoidance
typically involves avoiding particular events, such as collision and alerting, it is a little easier to
define the metric in terms of positive costs instead of negative rewards. The objective, then, is to
minimize the expected sum of instantaneous costs. In this report, the word “cost” is used to mean
“sum of instaneneous costs.” When “instantaneous cost” is intended, it will always be written out
as such.1

To make solving MDPs efficient, the immediate cost function is typically assumed to depend
only on the current state and action. Although the immediate cost function may be probabilistic,

1In other texts, the expected sum of instantaneous costs is often called “cost-to-go.”
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this report assumes that the function is deterministic for simplicity. The cost of executing action
a from state s is denoted C(s, a).

One of the challenges when solving an MDP is deciding how to represent the policy. If the
number of states is finite, then the mapping from states to actions can be represented using a table.
For problems with continuous state variables, as is the case with collision avoidance, it is no longer
possible to enumerate every possible state. The field of approximate dynamic programming has
studied several different approaches [20], including the use of neural networks [21] and decision
trees [22]. This report focuses on a representation that uses a grid-based discretization of the state
space [23].

The first step in computing the optimal policy using a grid-based representation is to choose
suitable cut points along the dimensions of the state space. The Cartesian product of the sets of
cut points defines the vertices of the grid. These vertices correspond to the discrete states in the
representation. One limitation of a grid-based method is that the number of discrete states grows
exponentially with the number of state variables, making the storage and computation of the policy
expensive. Hence, when designing an MDP to model a problem, it is important to include only the
relevant state variables to help prevent the discrete state space from becoming too large.

Once a discretization scheme has been chosen, the original continuous transition function T
must be redefined over the discrete state space. Given a start state and action to be executed,
the resulting state distribution from the original transition function may include states that are
not part of the discrete state space. Different strategies exist for arranging the resulting state
distribution to have support only over the set of discrete states. The approach taken in this report
is to sample from the resulting state distribution and apportion probability mass to the discrete
states associated with the vertices of the cell enclosing the sample. Discrete states that are closer
to the sample are assigned more weight [12,23].

DP can be used to compute the expected cost from every discrete state when following an
optimalK-step horizon policy π∗K . The optimal expected cost function JK can be used to determine
the optimal policy. Computing JK is done using an iterative process, starting with initializing the
function J0(s) = 0 for all states s. Given the function Jk−1, the function Jk is determined as
follows:

Jk(s) = min
a

[
C(s, a) +

∑
s′

T (s, a, s′)Jk−1(s′)
]
. (1)

This iteration is continued to the desired horizon. The state-action cost JK(s, a) with a
K-step horizon is given by

JK(s, a) = min
a

[
C(s, a) +

∑
s′

T (s, a, s′)JK−1(s′)
]
. (2)

An optimal K-step policy satisfies

π∗K(s) = arg min
a

JK(s, a). (3)
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In general, there may be multiple actions that satisfy the equality above from a particular state.
In this work, it is assumed that ties are broken according to some ordering over the set of available
actions, resulting in a unique optimal policy. In the context of collision avoidance, it may make
sense to give preference to less extreme advisories if they have the same expected cost as more
extreme advisories.

Because the actions are categorical, one cannot simply interpolate the optimal policy directly
to determine the optimal action from non-discrete states. Instead, one can interpolate the state-
action function and from that determine the optimal action. Storing the optimal state-action
function requires |S| × |A| entries, whereas storing the optimal policy requires only |S| entries.
Because the number of actions available from a particular state is typically small in the collision
avoidance domain, the storage of the state-action table can be compressed. The implementation
used for the experiments in this report stores the state-action costs only for valid state-action pairs
and uses an index file for fast lookups.

2.2 PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

In POMDPs [24], the exact state of the world is not directly observable. Instead, observations
are made that depend probabilistically on the current state of the world. The probability that
observation o is made from state s is given by O(s, o). If the observation space, denoted O, is
continuous, then O(s, o) is a density. If O is finite, O(s, o) is a probability mass.

In general, the initial state is unknown. The uncertainty in the initial state is represented by
a distribution, often called a belief state. A belief state b assigns probability b(s) to being in state
s. The space of possible beliefs is denoted B, which is a continuous space (each point in this space
represents a probability distribution over S) with dimensionality |S|.

If the belief state is b, a is executed, and o is observed, the new belief state b′ is given by

b′(s′) = Pr(s′ | o, a, b) (4)
∝ Pr(o | s′, a, b)Pr(s′ | a, b) (5)
= Pr(o | s′)

∑
s

T (s, a, s′)b(s) (6)

= O(s′, o)
∑
s

T (s, a, s′)b(s). (7)

This process of updating the belief state follows directly from Bayes’ rule and is known as state
estimation or filtering [25].

In a POMDP, the belief state is used to determine which action to execute. Hence, policies
are mappings from belief states to actions. As with MDPs, various optimality criteria can be
defined for POMDPs, including the minimization of expected cost. Because the belief state space
is high-dimensional and continuous, representing the optimal policy for a POMDP is much more
difficult than for an MDP. Computing the optimal policy exactly, even for finite horizon problems,
is typically infeasible [26]. However, many different approximation methods have been proposed in
the literature [27–29].
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2.3 FULL OBSERVABILITY APPROXIMATION

Several different POMDP solution strategies involve solving the problem assuming full observability
using a DP algorithm [30–33]. If πMDP is the policy assuming full observability, then one strategy
called the “most likely state” (MLS) strategy [34] is as follows:

π(b) = πMDP(arg max
s

b(s)), (8)

where b is the current belief state. The problem with the MLS strategy is that it does not take into
account the possibility of being in different states. In the collision avoidance problem, for example,
if the aircraft is slightly more likely to be in a “safe” state than an “unsafe” state, MLS will ignore
the possibility of being in the unsafe state and recommend an overly optimistic action. The current
version of TCAS uses point estimates of certain state quantities, although it incorporates some
heuristics to assess the confidence in the estimates.

The POMDP approximation method adopted in this report involves choosing the optimal
action under the assumption that the world will become fully observable at the next decision point.
This method involves computing the state-action costs JMDP(s, a) assuming full observability. If
the current belief state is b, then the action to be selected is given by

π(b) = arg min
a

∑
s

b(s)JMDP(s, a). (9)

This heuristic, often called QMDP,2 has been studied by others, and has been found to perform
well on many problems but tends to fail in problems where taking particular actions results in a
significant reduction in state uncertainty [30–33]. Because this method takes into consideration the
full belief distribution when making decisions, it can provide more robust performance than MLS
when state uncertainty is significant.

2.4 DISCUSSION

Before adopting an MDP framework for deriving collision avoidance logic, it is important to assess
whether the assumptions made by the model are valid. One of the most significant assumptions it
makes is that the dynamics are Markovian, which means that the current state must contain all
the information relevant to predict the distribution of states at the next decision point. In some
problems, it is not practical to add all the state variables necessary to make the dynamics Markovian
because it makes the discretized state space intractably large. Depending on the problem, it may
be possible to approximate a seemingly non-Markovian system with a simplified Markovian model
and still obtain acceptable performance. One of the primary questions to be answered in this
report is whether the collision avoidance problem can be adequately represented by an MDP that
is simple enough to be solved in reasonable time while providing the desired safety and operational
performance.

2In contexts where reward is to be maximized, as opposed to cost to be minimized, Q is often used in the
literature [35] to represent the state-action value function. In general, Q(s, a) = −J(s, a).
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3. COLLISION AVOIDANCE IN TWO SPATIAL DIMENSIONS

The previous section introduced MDPs as a framework for modeling sequential decision problems
and DP as a solution method. This section presents an MDP formulation to collision avoidance
that makes the following assumptions:

• Decisions at 1Hz. Decisions are made once per second. This is exactly the same frequency
at which the current version of TCAS makes decisions.

• No horizontal maneuvering. The intruder is approaching head-on with a constant closure
rate, and neither aircraft turns. Because the closure rate is assumed constant and there
is no horizontal maneuvering during the encounter, the motion is essentially in two spatial
dimensions: altitude and horizontal range. This assumption is relaxed in Section 5.

• Deterministic pilot response. It is assumed that the pilot responds deterministically to the
resolution advisories issued by the system. In reality, there is significant variability in the
response of pilots. Section 6 shows how to accommodate pilot response variability into the
model.

• Perfect sensors. The collision avoidance system has perfect state information. In reality, the
sensor system is likely to be noisy. This assumption is relaxed in Section 7.

• Uncoordinated. The intruder is not equipped with a collision avoidance system. If the intruder
is also equipped with a collision avoidance system, it is important that their maneuvers be
coordinated, as discussed in Section 8.

• Single intruder. There is a single intruder approaching the own aircraft. Although multithreat
scenarios are relatively rare, this assumption is relaxed in Section 9.

Although this model is very simple, it serves as a base from which a more sophisticated collision
avoidance system can be built, as discussed later in this report.

3.1 ACTION SPACE

The current version of TCAS issues advisories to the pilot through an aural annunciation, such
as “climb, climb,” and through a visual display. The visual display varies, but it is typically
implemented on an instantaneous vertical speed indicator or a vertical speed tape or pitch cues
on the primary flight display. The set of advisories issued by TCAS can be interpreted as target
vertical rate ranges. If the current vertical rate is outside the target vertical rate range, the pilot
should maneuver to come within the required range. If the current vertical rate is within the target
range, a corrective maneuver is not required, but the pilot should be careful not to maneuver
outside the range.

The current version of TCAS assumes that the pilot will respond to initial advisories with a
1/4 g maneuver to come within the target vertical range. Depending on how the encounter evolves,
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TABLE 1

Reduced advisory set

Vertical rate (ft/min)

Name Minimum Maximum Strength (g) Available from

COC −∞ ∞ 0 All
DES1500 −∞ −1500 1/4 COC
CL1500 1500 ∞ 1/4 COC
SDES1500 −∞ −1500 1/3 CL1500, SCL1500, SCL2500, SDES2500
SCL1500 1500 ∞ 1/3 DES1500, SDES1500, SDES2500, SCL2500
SDES2500 −∞ −2500 1/3 DES1500, SDES1500
SCL2500 2500 ∞ 1/3 CL1500, SCL1500

TCAS has the option to strengthen the original advisory or reverse the sense of the advisory. Once
an advisory has been strengthened, TCAS may later weaken the advisory. All subsequent advisories
are assumed to be responded to with a stronger 1/3 g maneuver.

The set of advisories used in this report for the DP logic is summarized in Table 1. In the
table, COC stands for “clear of conflict,” which means that no advisory has been issued or there
is no longer a threat. The sense of the advisory is labeled either CL or DES, for either climb
or descend, respectively. The prefix “S” indicates that a stronger response is assumed. Only the
minimum and maximum rates are typically displayed to the pilot, and not the “strength” of the
response, so the six advisories in the table (not including COC) only correspond to four different
advisories to be displayed to the pilot. However, it is useful to distinguish the advisories according
to the assumed strength of the maneuver when developing the MDP model.

Table 1 also indicates the availability of each advisory given the current advisory on display.
For example, COC can be issued at any time. However, because DES1500 and CL1500 are initial
advisories, they can only be issued if COC is on display to the pilot. The advisory SDES1500
can be issued following CL1500, SCL1500, and SCL2500, in which case it acts as a reversal, or
following SDES2500, in which case it acts as a weakening. Because SDES1500 is a subsequent
advisory, it cannot be issued following COC. It also cannot be issued following DES1500 because
they are fundamentally the same advisory, differing only in strength.

The advisories in Table 1 are a subset of the advisories available in the current version of
TCAS. Although it captures all of the “corrective” advisories issued by TCAS, it does not contain
certain “preventive” advisories. TCAS can issue advisories such as “do not climb” to prevent an
aircraft from climbing into another aircraft. These preventive advisories are less disruptive to the
flight path of the aircraft. However, there is currently some debate within the TCAS development
community about the utility of such advisories. Although this report does not incorporate preven-
tive advisories, it is straightforward to include them. The computational and storage requirements
of the MDP approach scale linearly with the addition of new actions.

The collision avoidance system may choose to initially issue either DES1500 or CL1500.
Following an initial 5 s delay, the pilot of the own aircraft will respond with a 1/4 g maneuver,
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if necessary, to achieve the required vertical rate. Following the initial advisory, the system may
choose to either terminate the advisory, strengthen the advisory, or reverse the advisory. If the
advisory is strengthened, the pilot will maneuver at 1/3 g after a 3 s delay to achieve a vertical rate
of 2500 ft/min in the direction of the original advisory. If the advisory is reversed, the pilot will
maneuver at 1/3 g after a 3 s delay to achieve a vertical rate of 1500 ft/min in the opposite direction
of the original advisory [36].

3.2 STATE SPACE

The state of the world is represented using five variables:

• h: altitude of the intruder relative to the own aircraft,

• ḣ0: vertical rate of the own aircraft,

• ḣ1: vertical rate of the intruder aircraft,

• τ : time to closest approach (horizontally), and

• sRA: the state of the resolution advisory.

The variable τ is the time to horizontal closest approach, which is the same as the time to
zero horizontal separation in this model because the encounter is assumed head-on with no turning.
Instead of τ , the horizontal range could have been used, but τ allows the MDP to be formulated
independently of the actual closure rate, assumed to be constant.

The variable sRA is discrete. It allows the system to track which advisory is currently active
(if any) and the time remaining until the pilot responds. For the advisories in Section 3.1, sRA can
assume one of 23 different values. The state COC indicates that there is no resolution advisory
currently active. If DES1500 is issued, for example, the state transitions to DES1500-4, indicating
that there are four more seconds until the pilot will execute the descend. If the descend advisory is
continued, the state will countdown deterministically, as in Fig. 2. The pilot begins executing the
descent at DES1500-0. The transition model for CL1500 is similar.

COC
DES
1500
4

DES
1500
3

DES
1500
2

DES
1500
1

DES
1500
0

Figure 2. Advisory transition model when DES1500 is issued.

Fig. 3 shows the transition model when a subsequent advisory, SDES1500, is issued. The
SDES1500 advisory can be issued following any climb advisory or SDES2500. It cannot be issued
following COC or DES1500. When SDES1500 is issued for the first time, the state transitions to
SDES1500-2, indicating two seconds until execution. If SDES1500 is continued, the state counts
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Figure 3. Advisory transition model when SDES1500 is issued.

down until reaching SDES1500-0, at which point the advisory is followed. The transition models
for SCL1500, SDES2500, and SCL2500 are similar. When the advisory is terminated, the state
transitions to COC immediately, discontinuing any response of the pilot to advisories.

The state space is discretized using a multidimensional grid. This report uses the discretiza-
tion shown in Table 2, which results in 8.7 million grid vertices that correspond to discrete states.
The discretization can be made finer to improve the quality of the discrete model approximation,
but it would be at the expense of additional computation and storage to calculate and store the
expected cost table.

TABLE 2

Discretization scheme

Variable Grid Edges

h −1000,−900, . . . , 1000 ft
ḣ0 −2500,−2250, . . . , 2500 ft/min
ḣ1 −2500,−2250, . . . , 2500 ft/min
τ 0, 1, . . . , 40 s
sRA N/A (already discrete)
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3.3 DYNAMIC MODEL

The dynamics of the aircraft involved in the encounter are governed by sequences of accelerations.
These accelerations are used to update the vertical rates of the aircraft and, consequently, their
positions. The maximum vertical rate of both aircraft is assumed to be ±2500 ft/min, although
this is easily changed at the expense of a larger state space. In a real system, the limits can be
adjusted to meet the performance constraints for the particular aircraft.

When pilots are not following a resolution advisory due to the response delay or the absence
of an advisory, the aircraft follow a white-noise acceleration model. At each step, the aircraft
selects an acceleration from a zero-mean Gaussian distribution with σḧ standard deviation. If the
σḧ parameter is small, the aircraft tend to fly in straight lines. Large values for σḧ can lead to
significant variability in the paths of the aircraft. This section assumes σḧ = 3 ft/s2, but this
parameter may be estimated from radar data. Following the response delay to an advisory, it is
assumed that the pilot maneuvers with exactly the prescribed acceleration to come within the target
vertical rate range. Once within the target vertical rate range, the aircraft resumes white-noise
vertical accelerations.

In order to apply DP, the dynamic model must be discretized into a discrete transition model
T (s, a, s′). One way to do this is to define Pr(s | x), a probability distribution over discrete
states given a continuous state. Several different schemes can be used; this report uses multilinear
interpolation because it was shown to work well for the collision avoidance problem in ATC-360.
In this scheme, probability is assigned to the discrete states associated with the vertices of the grid
cell that encloses the continuous state x. The probability assigned to a state s is based on how
close it is to x. If the probabilities are treated as weights, the weighted average of the vertices
enclosing x is exactly x. Once Pr(s | x) is specified using multilinear interpolation or some other
method, then the discrete transition model can be computed as follows:3

T (s, a, s′) = Pr(s′ | s, a) (10)
=
∑
x′

Pr(s′ | x′)Pr(x′ | s, a). (11)

Given a state and action, Pr(x′ | s, a) can be nonzero for a nonfinite set of continuous next
states. To build the discrete transition function, this report relies upon sigma-point sampling.
Other sampling methods may be used, but sigma-point sampling has been shown to work well for
the collision avoidance problem in ATC-360, and it has the desirable property of being determin-
istic. The only noise in the dynamic model is due to sampling ḧ0 and ḧ1, the accelerations of the
aircraft when an advisory is not being followed. The following acceleration pairs are deterministi-
cally generated using sigma-point sampling: (0, 0), (σḧ, 0), (−σḧ, 0), (0, σḧ), (0,−σḧ). Each sample
is assigned weight 1/6, except for the first one, which is assigned weight 1/3. When executing
action a from state s with acceleration pair (ḧ0, ḧ1), the resulting state is uniquely given by the
model

x′ = f(s, a, ḧ0, ḧ1). (12)
3In reality, Pr(x′ | s, a) is a density, but the probability density function is approximated by a probability mass

function through sampling.
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TABLE 3

Event costs

NMAC Alert Strengthening Reversal Clear of Conflict

1 0.01 0.009 0.01 −1× 10−4

Given N samples of the accelerations (five in the sigma-point scheme just described), Pr(x′ |
s, a) is approximated by

Pr(x′ | s, a) =
N∑
n=1

δ(x′, f(s, a, ḧ(n)
0 , ḧ

(n)
1 ))Pr(ḧ(n)

0 , ḧ
(n)
1 ), (13)

where δ(X,Y ) = 1 if X = Y and 0 otherwise. The probability Pr(ḧ(n)
0 , ḧ

(n)
1 ) is simply the weight

assigned to the sample. Equation (13) may be combined with Eq. (11) to define the discrete
transition probabilities.

Computing the distribution over discrete next states scales O(N2D), whereN is the number of
samples and D is the number of dimensions in the state space. Both N and D are 5 for the model in
this section, so the required computation is quite modest. If the dimensionality of the state space
is required to grow significantly larger to accommodate additional state variables not currently
modeled, simplex interpolation may be a better option than multilinear interpolation because its
computation scales linearly instead of exponentially with the number of variables [22,23,37].

3.4 COST FUNCTION

The costs of various events are summarized in Table 3. NMAC, in this section, occurs when
|h| < 100 ft and τ = 0 s. The 100 ft threshold was chosen because it corresponds to the vertical
separation of an NMAC used historically as a metric for evaluating TCAS. The costs were chosen
somewhat arbitrarily, but the cost of alerting was made low compared to the cost of NMAC. The
cost of strengthening was made lower than that of reversing because the required maneuvering
would be less severe. A small negative cost, called the clear-of-conflict reward, is awarded at every
time step the system is not alerting to provide some incentive to discontinue alerting after the
encounter has been resolved.

This report focuses on a relatively small number of cost factors, but additional factors can
be incorporated to address other safety or operational considerations. It may be desirable to add
another state variable that represents the altitude above ground and then add a large penalty for
issuing down-sense advisories at low altitude to prevent collision with terrain. Operationally, it may
be desirable to discourage issuing advisories when aircraft are flying level and separated by more
than 500 ft in altitude. If the state space does not require expanding, the computation required to
construct the expected cost table grows linearly with the number of cost factors and the storage
required remains constant. Online execution of the logic also remains constant.
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3.5 OPTIMAL POLICY

DP, as introduced in Section 2, can be applied directly to the discretized model to obtain a discrete
expected cost table J(s, a). The discretization in Table 2 leads to an expected cost table of 263MB
using the sparse action representation described in Appendix A. Computing the expected cost table
requires less than a minute on a single 3GHz Intel Xeon core.

Since the collision avoidance logic is critical to safety, it is important for humans to understand
and be able to anticipate the behavior of the system. Because the logic makes decisions based on
values in an expected cost table, which is not directly informative to a human, it is necessary to
develop ways to visualize the logic. Visualization is also important in building confidence that the
logic produced through computer optimization is sensible.

Figure 4 shows plots that indicate the optimal action for different slices of the state space.
In the first plot, both aircraft are initially level and no advisory has been issued. The blue region
indicates where the logic will issue a descend advisory, and the green region indicates where the
logic will issue a climb advisory. The colored region (either green or blue in this first plot) is called
the alerting region.

There are two notable properties of the shape of the alerting region. The first is that no
advisory is issued when τ ≤ 5 s, which is due to the 5 s pilot response delay. Alerting less than 5 s
prior to collision makes no difference in preventing collision, so the optimized logic chooses not to
accrue the cost of alerting. In reality, there is likely to be some nonzero chance that the pilot will
respond sooner. If the model is adjusted to allow some probability of the pilot responding in fewer
than five seconds, then the alerting region will extend further to the left. This will be discussed in
Section 6.

The second notable property of the first plot is the notch on the right side of the alerting
region. In cases where the intruder is close to co-altitude with the own aircraft, the logic will delay
alerting. It waits until it is more certain whether the intruder will end up above or below the own
aircraft before committing to an advisory.

In the second plot, the own aircraft is initially climbing at 1500 ft/min while the intruder is
initially level. The shape of the alerting region is more complex and lacks the symmetry of the
first plot due to relative motion in the vertical plane. One notable property of this plot is that, in
some situations, the system issues a climb when the intruder is above. In these situations, because
the own aircraft is already climbing, there is insufficient time for the own aircraft to accelerate
downwards to pass below the intruder.

The third plot shows the alerting region when the own aircraft is climbing at 1500 ft/min
and the intruder is level, as in the second plot, but an initial descend advisory was issued two
seconds previously. Unless the advisory is canceled, strengthened, or reversed, the pilot will begin
descending in three seconds. The white region indicates where the system will discontinue the
advisory, and the blue region shows where the system will continue with the advisory that has
already been issued. In some situations, the logic will strengthen the advisory to a descend at
2500 ft/min or reverse the advisory to a climb.
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Figure 4. Optimal action plots. Horizontal axis indicates τ (s) and the vertical axis indicates h (ft).
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Figure 5. Example encounter comparing the performance of the DP logic against the current TCAS logic.
The own aircraft approaches from the left, and the intruder approaches from the right.

3.6 EXAMPLE ENCOUNTER

Figure 5 shows an example head-on encounter comparing the behavior of the DP logic and the
current TCAS logic, Version 7.1. The DP logic, 15 s into the encounter, issues a descend advisory
to pass below the intruder as the intruder is climbing at approximately 1100 ft/min. The expected
cost for issuing a descend advisory at this time is 0.012, smaller than the expected costs for not
issuing an advisory (0.013) or issuing a climb advisory (0.020). The pilot begins descending 5 s later.
As the intruder levels off later in the encounter, the DP logic strengthens the descend advisory at
23 s. The pilot begins to strengthen the descent 3 s later. Once safely separated in altitude, the DP
logic issues a COC advisory. The vertical separation when τ = 0 is 396 ft.

The performance of TCAS was evaluated using a constant 500 ft/s horizontal closure rate
and an initial altitude of 43,000 ft, which puts TCAS into its highest sensitivity level [38]. When
the own aircraft is 324 ft above the intruder 4 s into the encounter, TCAS issues a climb advisory
because it anticipates, using straight-line projection, that by climbing it can safely pass above the
intruder. Ten seconds later, when the own aircraft is only 141 ft above the intruder, TCAS reverses
the climb to a descend because it projects that maintaining the climb will not provide the required
level of separation. As the intruder begins to level off and then descend, the descend advisory
becomes ineffective. The vertical separation when τ = 0 is 94 ft.

3.7 PERFORMANCE ASSESSMENT

The overall performance of the system can be estimated by generating a large collection of en-
counters and running them in simulation. The results in this section use the (continuous) dynamic
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TABLE 4

Performance evaluation on head-on encounters

Metric DP Logic TCAS Logic

NMACs 3 169
Alerts 690,406 994,317
Strengthenings 92,946 40,470
Reversals 9569 197,315

model assumed by the MDP. The simulation of TCAS (Version 7.1) used a constant 500 ft/s hor-
izontal closure rate. To generate the initial state of the encounter, ḣ0 and ḣ1 are chosen from a
uniform distribution from −1000 ft/min to 1000 ft/min. The variable τ is set to 40 s and sRA is set
to COC. So that a significant fraction of encounters (∼13%) have a vertical miss distance of less
than 100 ft, h is set to τ(ḣ0 − ḣ1) + η, where η is chosen from a zero-mean Gaussian with 25 ft
standard deviation.

Table 4 summarizes the results of evaluating the DP and TCAS logics on one million encoun-
ters. As the table shows, TCAS results in 50 times more NMACs than the DP logic, even though
it alerts 45% more frequently. Although TCAS strenghtens half as frequently as the DP logic,
it reverses 20 times more frequently. It should be emphasized, however, that the simple model
was designed to stress test the logic, not provide accurate estimates of performance in the current
airspace. High-fidelity encounter models based on recorded surveillance data have been developed
for this purpose and will be discussed in the next section [39].

3.8 SAFETY CURVE

A safety curve is one way to visualize the effect of varying a system parameter on safety and alert
rate. Figure 6 shows the safety curves for the DP logic and TCAS. The DP logic safety curve was
produced by varying the cost of alerting from zero to one. The other event costs were held fixed.
The upper-right part of the curve corresponds to costs of alerting near zero and the lower-left part
corresponds to costs near one.

The sensitivity of TCAS, in terms of alerting thresholds and other parameters, varies discretely
with altitude. Above 42,000 ft, TCAS is at its highest sensitivity level and will maneuver earlier
and more aggressively to prevent collision. The safety curve for TCAS was generated by varying
the initial altitude. The upper-right part of the curve corresponds to greater altitudes.

The safety curve shows that the DP logic can exceed or meet the level of safety provided by
TCAS while alerting far less frequently. Plotting safety curves like the one in Fig. 6 can aid in
choosing the relative cost for alerting. The alert cost can be chosen to provide the lowest rate of
alerting for a given required safety level. Alternatively, one can choose the maximum acceptable
alert rate and use the appropriate alert cost to maximize safety.
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Figure 6. Safety curve. Each point on the curve was estimated from 100,000 simulations.

3.9 EFFICIENTLY EVALUATING PERFORMANCE METRICS

A DP algorithm known as iterative policy evaluation can efficiently evaluate the logic on metrics
that are different from those used to optimize the logic [35]. During the process of validating the
logic, it may be useful to determine where in the state space the system has difficulty preventing
NMAC. It may also be useful to determine the probability that the system will eventually alert
from different starting states. Figure 7 shows these metrics evaluated on a slice of the state space.

Prior TCAS safety analyses used Monte Carlo simulation to evaluate performance. Running
an adequate number of Monte Carlo simulations from each discrete state would be prohibitively
expensive. For example, even if Monte Carlo required only one second to compute the probability
of NMAC from each state, it would require 100 days of continuous computation to estimate the
probability of NMAC from all 8.7 million states. DP can do this computation in under a minute.

3.10 DISCUSSION

This section showed that, compared to the current TCAS logic in head-on encounters with fixed clo-
sure rates, the optimized logic provides greater safety while alerting much less frequently. Although
the model only represents motion in two spatial dimensions, the next section will demonstrate how
well it does in three-dimensional encounters, even when the model used for optimization does not
match the one used for evaluation. Performance in three dimensions, however, can be improved
even further by explicitly modeling motion in the horizontal plane. This enhancement to the logic
is presented in Section 5.
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Figure 7. Metric evaluation on the state slice where ḣ0 = 0 ft/min, ḣ1 = 0 ft/min, sRA = COC. Horizontal
axis indicates τ (s) and the vertical axis indicates h (ft).
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4. ROBUSTNESS ANALYSIS

The previous section presented a way for computing the optimal collision avoidance strategy as-
suming a simple, head-on model. It presented performance results from simulations that used the
same dynamic model that was used for optimization. Because it is unlikely that the model used for
optimizing the logic will exactly match the real world, it is important to quantify the robustness of
the logic to modeling errors. This section analyzes how the performance of the logic, in terms of
safety and operational metrics, degrades as the model used for evaluating the logic diverges from
the model used for optimizing the logic.

This section uses the same simple model and cost function from the previous section to
optimize the logic. When evaluating the logic in three spatial dimensions,

τ =

−r/ṙ if ṙ < 0,
∞ otherwise,

(14)

where r is the horizontal range to the intruder and ṙ is the horizontal closure rate. The next section
will present a more principled method for handling three-dimensional dynamics, but this simple
method will be used to provide a rough estimate of the robustness of the approach.

This section describes two encounter models for evaluating the robustness of the optimal logic
to modeling errors. These models are described in the next two sections.

4.1 WHITE-NOISE ENCOUNTER MODEL

The white-noise encounter model uses the dynamic model of Section 3.3 to model the vertical
dynamics. The process noise parameter σḧ controls the amount of vertical accelerating the aircraft
do. The horizontal dynamics are also modeled by a white-noise acceleration model. Each aircraft
moves in the horizontal plane in response to independent random accelerations generated from a
zero-mean Gaussian with a standard deviation of 3 ft/s2.

Encounters are initialized by randomly generating the initial ground speeds of both aircraft,
s0 and s1, from a uniform distribution from 100 ft/s to 500 ft/s. The horizontal range between the
aircraft is set to

r = ttarget(s0 + s1) + ur, (15)

where ur is selected from a zero-mean Gaussian with 500 ft standard deviation. The parameter
ttarget, set to 40 s in the experiments, controls the expected time to NMAC.

The bearing of the intruder aircraft with respect to the own aircraft is sampled from a zero-
mean Gaussian distribution with a 2° standard deviation. The heading of the intruder relative to
the heading of the own aircraft is sampled from a Gaussian distribution with a mean of 180° and
a standard deviation of 2°.
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The initial vertical rates, ḣ0 and ḣ1, are drawn from a uniform distribution ranging from
±1000 ft/min. The altitude of the own aircraft h0 is initialized to 43,000 ft. The initial altitude of
the intruder is

h0 + ttarget(ḣ0 − ḣ1) + uh, (16)

where uh is selected from a zero-mean Gaussian with 25 ft standard deviation.

4.2 CORRELATED ENCOUNTER MODEL

The white-noise encounter model is useful for evaluating the robustness of the logic as the process
noise parameter σḧ is varied. However, the assumption that the vertical motion is governed by a
white-noise acceleration model is the same as that assumed in the logic optimization process. To
determine the robustness of the logic to a significantly different model structure, the performance
of the logic is evaluated on a higher-fidelity encounter model, called the correlated encounter model,
derived from nine months of recorded radar data [39,40].

The correlated encounter model represents the variables governing the initialization of the
encounter as a Bayesian network [41]. The Bayesian network represents a probability distribution
over sixteen variables such as airspace class, category of aircraft, initial airspeed, and acceleration.
The dynamics of the aircraft are represented by a dynamic Bayesian network, which captures the
changes in turn rate and vertical rate over time.

4.3 ROBUSTNESS TO MODEL PARAMETER VARIATION

This section analyzes the robustness of the optimized logic on the white-noise encounter model with
varying process noise parameter. In the following discussion, the modeled noise parameter refers
to σḧ used when optimizing the logic, and the environment noise parameter refers to σḧ used in
the white-noise encounter model during evaluation.

In the first set of experiments, the modeled noise parameter is kept fixed at 8 ft/s2. Two policy
slices for this setting of σḧ are shown in Fig. 8. The environment noise parameter is varied from
0 ft/s2 to 15 ft/s2. The performance of both the optimized logic and TCAS are shown in Fig. 9.
Each point on the curves was estimated from one million simulations.

Due to the way encounters are initialized, trajectories with zero acceleration noise will always
result in an NMAC unless an advisory is issued. When the environment noise parameter is zero,
both TCAS and the DP logic alert in every encounter and successfully prevent NMAC. As the
environment noise parameter increases, the system predictability decreases and some encounter
trajectories diverge, initially causing the alert rate to decrease and the NMAC rate to increase
for both the TCAS logic and the DP logic. The DP logic reaches its lowest alert rate when the
environment noise matches its optimized value of 8 ft/s2.

Increasing the environment noise above the modeled noise degrades performance, but the
logic remains robust regardless of whether the noise is over- or under-estimated. Regardless of the
actual environment noise, the DP logic is sufficiently robust to significantly outperform TCAS.
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(a) ḣ0 = 0 ft/min, ḣ1 = 0 ft/min, sRA = COC

DES1500

CL1500

COC

0 5 10 15 20 25 30 35 40
−1000

−500

0

500

1000

τ (s)

h
(f
t)

(b) ḣ0 = 1000 ft/min, ḣ1 = 0 ft/min, sRA = COC

Figure 8. Optimal action plots when σḧ = 8 ft/s2.
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Figure 9. Parametric robustness with varying environment and constant logic optimized at σḧ = 8 ft/s2.

In the second set of experiments, the modeled noise was varied from 0 ft/s2 to 15 ft/s2, but the
environment noise was kept fixed at 8 ft/s2. The performance is summarized in Fig. 10. Increasing
the noise modeled by the logic resulted in more alerts and fewer NMACs. As in Fig. 9, the number
of NMACs is nearly minimized when the modeled noise matches the environment. Divergence
between the environment dynamics and the modeled dynamics slightly degrades performance. The
performance of TCAS is constant because it is invariant to the modeled noise parameter.

4.4 ROBUSTNESS TO MODEL STRUCTURE VARIATION

Differences between the environment and the model used by the logic may be more significant than
simply variations in the process noise parameter. To determine the robustness of the system to
structural inaccuracies in the modeled dynamics, both TCAS and the DP logic were evaluated on
one million encounters generated by the correlated encounter model. Figure 11 shows the DP logic
performance for two different costs of alerting.

The logic derived with an alert cost of 0.01 resulted in fewer NMACs than TCAS but a
comparable number of alerts. When the alert cost was increased to 0.1, the DP logic was still more
successful than TCAS in preventing NMACs while alerting much less frequently. The two DP logic
curves show how choosing the alert cost can trade off safety for alert rate. These results indicate
that even if the environment model is very different from the model used by DP to optimize the
logic, the DP logic can still perform better than TCAS.

4.5 ROBUST DYNAMIC PROGRAMMING

Robust dynamic programming (RDP) has been proposed as a technique for making the policies
obtained through dynamic programming less sensitive to the particular choice of transition model
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Figure 10. Parametric robustness with varying logic and constant environment using σḧ = 8 ft/s2.
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Figure 11. Model structure robustness. DP alert cost is in parentheses.
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Figure 12. Robust logic performance on white-noise encounter model. DP alert cost is in parentheses.

[42]. If the set of transition models is given by T1, . . . , TN , then the value iteration algorithm is
modified so that

J∗k (s) = min
a

max
i

[
C(s, a) +

∑
s′

Ti(s, a, s′)J∗k−1(s′)
]
. (17)

Similarly,

J∗k (s, a) = max
i

[
C(s, a) +

∑
s′

Ti(s, a, s′)J∗k−1(s′)
]
. (18)

To determine the effect of robust dynamic programming on the performance of the system,
the logic was optimized using models with process noise parameters of 4 ft/s2, 6 ft/s2, and 8 ft/s2.
Figure 12 shows the results when the environment noise parameter of the white-noise encounter
model was varied from 0 ft/s2 to 15 ft/s2. The resulting RDP logic significantly reduced the number
of NMACs compared to TCAS but did so at the expense of more alerts. Logic derived with an
alert cost of 0.1 cut the alert probability in half while maintaining the NMAC rate well below that
of TCAS. Compared to the DP logic optimized for a single model (Fig. 9), the RDP logic provides
a flatter response, reducing the sensitivity of the optimized logic to environment noise.

The robust logic was also evaluated on the correlated encounter model. Table 5 summarizes
the results. The DP logic optimized using an alert cost of 0.01 achieves a minimum NMAC rate of
0.000875, as shown in Fig. 11, lower than that of TCAS (0.0113), while alerting at approximately
the same rate. The RDP logic using the same alert cost of 0.01 is able to reduce the NMAC rate
even further (0.000295) while only marginally increasing the alert rate. By increasing the alert
cost, the RDP logic has the potential to reduce the alert rate by 10% and the NMAC rate by an
order of magnitude compared to TCAS.
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TABLE 5

Robust logic performance on correlated encounter model

Logic Alert Cost Pr(NMAC) Pr(Alert)

TCAS N/A 1.13 · 10−2 9.29 · 10−1

DP 0.01 8.75 · 10−4 9.32 · 10−1

RDP 0.01 2.95 · 10−4 9.63 · 10−1

RDP 0.10 2.90 · 10−3 8.31 · 10−1

4.6 STATE-BASED ROBUSTNESS ANALYSIS

The results in this section have been using Monte Carlo to estimate the NMAC and alert rates
assuming a distribution over initial states. Each run of one million encounters took approximately
10min on a 3GHz processor, which is manageable when evaluating overall performance. However,
one might be interested in estimating performance for a large collection of individual initial states.
This is useful, for example, when identifying regions of the state space where the logic has difficulty
resolving NMAC. Monte Carlo simulation may not, in such situations, be feasible. This section
presents an alternative approach based on dynamic programming for efficiently evaluating metrics
on the full state space. This approach can be used to identify regions of the state space where
safety is degraded due to modeling error.

The objective is to compute M(s), the expected value of some metric, for every starting
state s in the discrete state space. The metric evaluated on a trajectory given by the state-action
sequence s1, a1, . . . , sN , aN is calculated by

N∑
n=1

m(sn, an), (19)

where m is the immediate metric function. For example, to estimate the probability of NMAC,
m(s, a) would be one if s is an NMAC state and zero otherwise.

Let π be the policy to be evaluated and T be the transition model used for evaluation. When
evaluating the robustness of π, the transition model T need not be the model used for deriving π.
An iterative process, similar to value iteration, is used to compute M from every discrete state.
First, M0 is set to zero for all states. The values for Mk are determined from Mk−1 as follows:

Mk(s) = m(s, π(s)) +
∑
s′

T (s, π(s), s′)Mk−1(s′). (20)

This iteration, as with value iteration, is repeated to the desired horizon.

Computing the probability of NMAC for the full discrete state space requires eight seconds
on a single processor. Running Monte Carlo on the 8.7 million states would require 17 years, even
if each state only required one minute instead of ten.

Figure 13 shows the probability of NMAC across the state space for selected environment
noise values. The NMAC region expands and diffuses as the environment noise increases. The 5 s
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pilot response delay causes the region for τ < 5 s to be uniform in the noiseless plot. The uniform
and gradual transition of NMAC probability across the entire range of h and τ demonstrates the
robustness of the logic across the state space.

4.7 DISCUSSION

ATC-360 showed that dynamic programming results in logic that provides the lowest possible alert
rate for a specified safety level under the assumption that the model used for optimization is
correct. The results in this section demonstrate that even when the model used for optimization
is inaccurate, the logic can still perform significantly better than TCAS in terms of preventing
near mid-air collisions and reducing the alert rate. This section also explored the use of robust
dynamic programming to further improve the robustness of the optimized logic to modeling errors,
and experiments showed reduced sensitivity to both parametric and structural modeling errors. A
state-based robustness analysis demonstrated logic robustness across the entire state space.

The robustness analysis in this section used encounter models. Although the encounter models
were useful in generating large collections of encounters to stress test the system, further analysis
will involve evaluating the logic robustness on recorded radar data. One complication with using
recorded radar data is that there are relatively few near mid-air collisions in the airspace, in part
due to the effects of TCAS. However, evaluation of the optimized logic on recorded encounters
can aid in tuning the model and choosing an appropriate cost function. Even if the model is not
perfectly tuned due to the sparseness of the recorded radar dataset, the optimized logic should still
perform well as shown by the experiments in this section.
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Figure 13. Probability of NMAC across the discrete state space evaluated at fixed environment noise values.
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5. COLLISION AVOIDANCE IN THREE SPATIAL DIMENSIONS

The previous section applied the logic optimized for a simple two-dimensional model (Section 3)
to three-dimensional encounters. Although the optimized logic performed better than TCAS, it
was limited by its inability to adequately model the horizontal dynamics. One way to better
model encounters in three spatial dimensions is to add additional state variables. However, naively
discretizing this (greatly expanded) state space would significantly increase the computational and
storage requirements.

This section presents a general approach for approximating solutions to problems where only
some of the state variables are controllable. In the collision avoidance problem, only the state
variables representing the vertical motion of the aircraft are controllable. It is assumed that the
state variables governing the horizontal motion of the aircraft evolve independently of the decisions
made by the collision avoidance system. The approximation method involves decomposing the
problem into two separate subproblems, one controlled and one uncontrolled, that can be solved
independently offline using dynamic programming. During execution, the results from the offline
computation are combined to determine the approximately optimal action from the current state.
After explaining the general approximation method, which may be applied to a variety of different
problems, this section applies it to collision avoidance.

5.1 PARTIAL CONTROL ASSUMPTIONS

It is assumed that the state is represented by a set of variables, some controlled and some un-
controlled. The state space of the controlled variables is denoted Sc, and the state space of the
uncontrolled variables, Su. The state of the controlled variables at time t is denoted sc(t), and the
state of the uncontrolled variables at time t, su(t). The solution technique may be applied when
the following three assumptions hold:

1. The state su(t + 1) depends only upon su(t). The probability of transitioning from su to s′u
is given by T (su, s′u).

2. The immediate cost c(t + 1) depends only upon sc(t) and a(t). If the controlled state is sc
and action a is executed, the immediate cost is denoted C(sc, a).

3. The episode terminates when su ∈ G ⊂ Su with immediate cost C(sc).

Figure 14 shows the influence diagram for this model.

In the collision avoidance problem, sc represents the state of the vertical motion variables,
and su represents the state of the horizontal motion variables. The first assumption is satisfied
because the advisories issued by the collision avoidance system do not influence the horizontal
motion. The second assumption is satisfied because the immediate nonterminal cost only depends
on the advisory state and the advisory being issued.

The third assumption requires the episode to terminate when su enters G. In this problem,
G is the set of states where there is a horizontal NMAC, defined to be when an intruder comes
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Figure 14. Influence diagram illustrating partial control in a Markov decision process.

within 500 ft horizontally. The immediate cost when this occurs is given by C(sc), which is one
when the intruder is within 100 ft vertically and zero otherwise. In simulation, the episode does
not necessarily terminate when su enters G, since entering G does not necessarily imply that there
has been an NMAC (e.g., the two aircraft may have safely missed each other by 1000 ft vertically).
However, it is generally sufficient to plan up to the moment where su enters G because adequate
separation at that moment generally indicates that the encounter has been resolved.

5.2 CONTROLLED SUBPROBLEM

Solving the controlled subproblem involves computing the optimal policy for the controlled variables
under the assumption that the time until su entersG, denoted τ , is known. In the collision avoidance
problem, τ is the number of steps until another aircraft comes within 500 ft horizontally. Of course,
τ cannot be determined exactly from su(t) because it depends upon an event that occurs in the
future, but this will be addressed by the uncontrolled subproblem (Section 5.3).

The expected cost from sc given τ is denoted Jτ (sc). The series J0, . . . , JK is computed
recursively, starting with J0(sc) = C(sc) for all controlled states and iterating as follows:

Jk(sc) = min
a

C(sc, a) +
∑
s′c

T (sc, a, s′c)Jk−1(s′c)

 . (21)
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The expected cost from sc when executing a for one step and then following the optimal policy is
given by

Jk(sc, a) = C(sc, a) +
∑
s′c

T (sc, a, s′c)Jk−1(s′c). (22)

TheK-step expected cost when τ > K is denoted JK̄ . It is computed by initializing J0(sc) = 0
for all states and iterating Eq. (21) to horizon K. The series J0, . . . , JK , JK̄ is saved in a table in
memory, requiring O(K|A||Sc|) entries.

For the collision avoidance problem, the tables were computed offline in less than two minutes
on a single 3GHz Intel Xeon core using a horizon of K = 39 steps. Storing only the values for
the valid state-action pairs requires 263MB using a 64 bit floating point representation. For the
experiments in this section, the same model and cost parameters assumed in Section 3 were used,
except the cost of alerting was decreased to 0.001.

5.3 UNCONTROLLED SUBPROBLEM

Solving the uncontrolled subproblem involves using the probabilistic model of the uncontrolled
dynamics to infer a distribution over τ for each uncontrolled state su. This distribution is referred
to as the entry time distribution because it represents the distribution over the time for su to enter
G. The probability that su enters G in τ steps is denoted Dτ (su) and may be computed using
dynamic programming. The probability that τ = 0 is given by

D0(su) =

1 if su ∈ G,
0 otherwise.

(23)

The probability that τ = k for k > 0 is computed from Dk−1 as follows:

Dk(su) =

0 if su ∈ G,∑
s′u
T (su, s′u)Dk−1(s′u) otherwise.

(24)

Depending on su, there may be some probability that su does not enter G within K steps.
This probability is denoted DK̄(su) and may be computed from D0, . . . , DK :

DK̄(su) = 1−
K∑
k=0

Dk(su). (25)

The sequence D0, . . . , DK , DK̄ is stored in a table with O(K|Su|) entries. Multilinear interpolation
of the distributions may be used to determine Dτ (xu) at an arbitrary continuous state xu.

The dynamics of the aircraft in the horizontal plane are assumed to follow those of the
white-noise encounter model described in Section 4.1. The motion can be described by a three-
dimensional model, instead of the typical four-dimensional (relative positions and velocities) model,
due to rotational symmetry. The three state variables are as follows:
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TABLE 6

Uncontrolled variable discretization

Variable Grid Edges

r 0, 50, . . . , 1000, 1500, . . . , 40000 ft
rv 0, 10, . . . , 1000 ft/s
θv −180°,−175°, . . . , 180°

• r: horizontal range to the intruder,

• rv: relative horizontal speed, and

• θv: difference in the direction of the relative horizontal velocity and the bearing of the intruder.

These variables are illustrated in Fig. 15.

The entry time distribution can be estimated offline using dynamic programming. The state
space was discretized using the scheme in Table 6, resulting in 730,000 discrete states. The offline
computation required 92 s on a single 3GHz Intel Xeon core. Storing D0, . . . , D39 in memory using
a 64 bit floating point representation requires 222MB. Storing D3̄9 is unnecessary because it can be
inferred from the other tables. The standard deviation of the noise in the horizontal accelerations
was set to 3 ft/s2 when generating the tables for the experiments in this section.

An alternative to using DP for computing the entry time distribution offline is to use Monte
Carlo to estimate the entry time distribution online. A Monte Carlo approach does not require
the uncontrolled variables to be discretized and does not require D0, . . . , DK , DK̄ to be stored in
memory. However, using Monte Carlo increases the amount of computation required online. Since
the NMAC region is small in the collision avoidance problem, the number of samples required to
produce an adequate distribution may be large. Importance sampling and other sampling methods
may be used to help improve the quality of the estimates of the entry time distribution [13]. The
experiments in this section use 100 trajectory samples to estimate the Monte Carlo entry time
distribution.
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Another alternative to DP is to use the simple point estimate of τ , originally suggested in
Section 4. The range rate ṙ may be computed directly from the horizontal state variables:

ṙ = rv cos(θv). (26)

If the aircraft are converging in range, then τ can be approximated by −r/ṙ. Otherwise, τ is set
beyond the horizon. This approach to estimating τ is very fast, but it does not take into account
the uncertainty of the estimate. In the experiments, this method is referred to as the simple entry
distribution.

Figure 16 shows two slices of the entry distribution computed using DP, Monte Carlo, and the
simple method. The plots show the mean of the entry distribution for different x and y horizontal
displacements between the aircraft conditioned on certain values for the relative horizontal speed,
rv. The relative horizontal velocity is pointing directly left. The plots can be understood by
imagining the own aircraft as lying stationary at the origin and the axes as indicating the location
of the intruder. The DP entry distribution is more diffuse and smoother than that produced by
Monte Carlo. The simple entry distribution has a mean under the horizon for much of the plot.
It tends to overestimate the collision risk. Use of the DP entry distribution over the simple entry
distribution, which only uses range and range rate similar to TCAS, allows for automatic horizontal
miss distance filtering.

5.4 ONLINE SOLUTION

After J0, . . . , JK , JK̄ and D0, . . . , DK , DK̄ have been computed offline, they are used together online
to determine the approximately optimal action to execute from the current state. For any discrete
state s in the original state space, the expected cost J∗K(s, a) may be computed as follows

J∗K(s, a) = DK̄(su)JK̄(sc, a) +
K∑
k=0

Dk(su)Jk(sc, a), (27)

where su is the discrete uncontrolled state and sc is the discrete controlled state associated with
s. Combining the controlled and uncontrolled solutions online in this way requires time linear in
the size of the horizon. Multilinear interpolation can be used to estimate J∗K(x, a) for an arbitrary
state x, and from this the optimal action may be obtained.

The memory requirements for directly storing the true J∗K(s, a) is O(|A||Sc||Su|). However,
the hybrid offline-online method presented in this section allows the solution to be represented using
O(K|A||Sc|+K|Su|) storage, which can be a tremendous savings when |Sc| and |Su| are large. For
the collision avoidance problem, this method allows the cost table to be stored in 500MB instead
of over 1TB. The offline computational savings are even more significant.
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Figure 16. Mean of the entry distribution for two slices of the state space when the relative horizontal velocity
is pointing directly left. Horizontal axis represents the relative x displacement (ft) and the vertical axis the
relative y displacement (ft).
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5.5 EXAMPLE ENCOUNTER

Figure 17 shows an example encounter comparing the behavior of the system using the DP entry
time distribution against the TCAS logic. The encounter was produced using the white-noise
encounter model. Figure 18 shows the entry time distribution computed using the three methods
of Section 5.3 at the points in time when the system issues alerts.

Seventeen seconds into the encounter, the DP logic issues a descend to pass below the intruder.
The expected cost for issuing a descend advisory is approximately 0.00928, lower than the expected
cost for issuing a climb advisory (0.0113) or for not issuing an advisory (0.00972). The DP entry
time distribution at this time has a conditional mean E[τ | τ < 40 s] of approximately 12.01 s. This
represents the mean time until horizontal NMAC inside the horizon. A considerable portion of the
probability mass (∼40%) is assigned to outside the horizon, when τ ≥ 40 s. The Monte Carlo entry
time distribution, in comparison, has less support but a comparable conditional mean of 17.12 s.
Only 15% of the probability mass is concentrated on τ ≥ 40 s. The point estimate of τ using the
simple method is 21.65 s.

After the descend advisory is issued, the intruder begins to increase its descent, causing the
DP logic to reverse the descend to a climb 20 s into the encounter. The pilot begins the climb
maneuver three seconds later. Once the aircraft are safely separated, the DP logic discontinues
the advisory at t = 31 s. The minimum horizontal separation is 342 ft, at which time the vertical
separation is 595 ft. No NMAC occurs.

TCAS initially issues a climb advisory four seconds into the encounter because it anticipates,
using straight-line projection, that by climbing it can safely pass above the intruder. Nine seconds
later, when the own aircraft is executing its climb advisory, TCAS reverses the climb to a descend
because it projects that maintaining the climb will not provide the required separation. TCAS
strengthens the advisory three seconds later, but fails to prevent the NMAC. The aircraft miss
each other by 342 ft horizontally and 44 ft vertically. Although the TCAS logic alerts earlier and
more often, the DP logic still outperforms it in this example encounter.

5.6 PERFORMANCE ASSESSMENT

Table 7 summarizes the results of simulating the DP logic and the TCAS logic on one million
encounters generated by the white-noise encounter model of Section 4.1. The performance of the
DP logic with the three entry distributions was assessed. The table summarizes the number of
NMACs, alerts, strengthenings, and reversals.

As the table shows, the DP logic can provide a much lower NMAC rate while significantly
reducing the alert rate. The Monte Carlo entry time distribution results in more NMACs, but it
alerts less frequently than the other methods. Increasing the number of samples used generally
improves performance but increases online computation time. The DP logic using the simple point
estimate of τ resolves all but one NMAC while rarely reversing or strengthening the advisory, but
alerts more frequently than Monte Carlo and DP.
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Figure 17. Example encounter comparing the system with the DP entry time distribution against TCAS.
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Figure 18. Entry time distribution computed using dynamic programming (DP), Monte Carlo (MC ), and
the simple (Simple) methods at the two alerting points of the DP logic in the example encounter of Fig. 17.

43



TABLE 7

Three-dimensional performance evaluation

DP Logic

Metric DP Entry MC Entry Simple Entry TCAS Logic

NMACs 2 11 1 101
Alerts 540,113 400,457 939,745 994,640
Strengthenings 39,549 37,975 26,485 45,969
Reversals 1242 747 129 193,582

5.7 SAFETY CURVE

Figure 19 shows the safety curves for the DP logic and TCAS when different parameters are varied.
Each point on the curves was estimated using 10,000 simulations from the white-noise encounter
model. The DP logic safety curves were produced by varying the cost of alerting from zero to one
while keeping the other event costs fixed. Separate curves were produced for the three methods of
estimating the entry time distribution. The upper-right region of the plot corresponds to costs of
alerting near zero and the lower-left region corresponds to costs near one.

The safety curve for TCAS was generated by varying the sensitivity level of TCAS. The
sensitivity level of TCAS is a system parameter of the logic that increases with altitude. At higher
sensitivity levels, TCAS will generally alert earlier and more aggressively to prevent NMAC.

The safety curves show that the DP logic can exceed or meet the level of safety provided by
TCAS while alerting far less frequently. The safety curves can aid in choosing an appropriate value
for the cost of alerting that satisfies a required safety threshold.

Figure 19 also reveals that the DP and Monte Carlo methods for estimating τ offer similar
performance and that they both outperform the simple method, especially when the cost of alerting
is high and the logic can only alert sparingly to prevent NMAC. In the upper-right region of the
plot, the three methods are nearly indistinguishable. In this region, the systems always alert and
are always successful in preventing NMAC.

5.8 TERMINAL CYCLING

Section 5.1 justified terminating encounters when the horizontal separation drops below 500 ft
because usually at that point the encounter has resulted in NMAC or has been resolved. In roughly
head-on encounters, the horizontal separation will typically drop below 500 ft for no more than one
decision point. However, in slow-closure encounters where aircraft are flying nearly parallel to each
other, the aircraft may come within 500 ft for multiple decision points. In such situations, it may
be desirable to issue an advisory to prevent collision.
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Figure 19. Safety curves. Each point on the curves was estimated from 10,000 simulations.

One remedy for this situation is to incorporate cycles at states where τ = 0. By cycling at
τ = 0 up to some horizon, it allows the system to model the effect of advisories after the intruder
comes within 500 ft or some other chosen threshold. Consequently, the optimized logic will issue
alerts even when τ = 0 because it can result in preventing collision.

One way to efficiently compute J0(sc) with N cycles is to first initialize J0(sc) = C(sc) and
then apply the update rule

J0(sc)← min
a

C(sc) +
∑
s′c

T (sc, a, s′c)J0(s′c)

 (28)

N times. Once J0 is obtained, J1, . . . , JK , JK̄ may be computed as before using the procedure in
Section 5.2.

Figure 20 shows example policy plots using five terminal cycles. The alert region shifts entirely
to the left. The remainder of this report uses five cycles, corresponding to the typical five-second
initial pilot response delay.

5.9 DISCUSSION

The experiments demonstrate that the collision avoidance logic that results from solving the MDP
using the method presented in this report reduces the risk of collision by a factor of 50 while issuing
fewer alerts than TCAS in the simulated encounters. The system reverses less than 1% of the time
that TCAS reverses, and the system strengthens less frequently as well. This section assumed a
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Figure 20. Optimal action plots for five terminal cycles. Horizontal axis indicates τ (s) and the vertical axis
indicates h (ft).

deterministic pilot response to advisories, but the next section will show how the MDP can be
easily modified to accommodate probabilistic responses.

The remainder of the report will use the decomposition approach introduced in this section
to approximate the solution to the full three-dimensional MDP. Unless otherwise stated, dynamic
programming will be used to estimate the entry time distribution.
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6. PROBABILISTIC PILOT RESPONSE MODELS

Previous sections have discussed formulating the collision avoidance problem as a Markov decision
process and solving for the optimal collision avoidance strategy using dynamic programming. The
logic was optimized to a pilot response model in which the pilot responds deterministically to all
advisories. The current TCAS logic also uses a deterministic pilot response model to predict the
future paths of the aircraft. However, it is unlikely that in actual flight the pilot will respond
to advisories exactly according to the assumed deterministic model. As recorded radar data have
shown, there is significant variability in the delay and strength of the response of pilots to advisories
[43]. This section extends the methodology of the previous sections to include probabilistic pilot
response models that capture the variability in pilot behavior in order to enhance robustness.

6.1 PILOT RESPONSE MODELS

Two models were constructed to capture the response of the pilot to resolution advisories. These
models describe how the variable sRA changes in response to different advisories. Each state
in the Markov chain indicates the active advisory as well as the current response. The state
“CL1500/COC,” for example, signifies that the CL1500 advisory is currently on display but that
the pilot is unresponsive to any advisory. In the first model, the number of states scales linearly
with the number of advisories (13 states in total). The second model scales quadratically with the
number of advisories (49 states in total). Figure 21, while not explicitly enumerating all state-action
pairs, captures the essential features of the models.

Before an advisory is issued, the Markov chain is in the “COC/COC” state. After a climb
advisory is issued, for example, the pilot responds immediately with probability 1/6, transitioning to
“CL1500/CL1500,” and remains unresponsive otherwise, transitioning to “CL1500/COC.” Should
the climb advisory continue at the next time step, the pilot responds with probability 1/6 if he has
not responded already. For a given advisory, therefore, the response delay is a geometric random
variable; a success probability of 1/6 was chosen so that, on average, the pilot will respond in five
seconds.

According to the linear model, if a descend advisory is subsequently issued, the pilot responds
with probability 1/4 and neglects all advisories otherwise, regardless of whether he was responding
to the climb advisory. The quadratic model differs in that, if the pilot is responding to the climb
advisory, he will continue to respond to the climb advisory with probability 3/4. With a success
probability of 1/4 the pilot will respond to the new advisory in three seconds on average.

If the advisory is discontinued, the Markov chain transitions to “COC/COC” with probability
one in the linear model. However, in the quadratic model, the pilot retains some memory of the
advisory he was previously executing and continues executing it with probability 3/4 even after the
advisory is terminated.
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Figure 21. Probabilistic pilot response models. The pilot response is in bold, and the active advisory is in
regular text. Transition probabilities are indicated along the directed arcs. Cycles are omitted.
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6.2 OPTIMAL POLICY

The optimal policy was computed using a unit NMAC cost, an alert cost of 0.01, a reversal cost of
0.01, a strengthening cost of 0.009, and a clear-of-conflict reward of 1× 10−6. Five terminal cycles
were used. Figure 22 depicts two sections of the optimal policy when both aircraft are flying level,
DES1500 is active, and the pilot is responding to it.

Figure 22(a) shows the optimal policy computed using the linear pilot response model. The
blue region indicates the best action is to continue issuing the descend advisory. The descend
advisory is typically maintained when the intruder is above the own aircraft. However, for large
values of τ , the descend advisory is continued even when the own aircraft is above because there is
sufficient time for the own aircraft to safely pass below the intruder. In the teal region, the optimal
policy is to reverse the descend to a climb when the own aircraft is above the intruder, rendering
the continued descent likely to induce NMAC. This region widens and narrows as τ changes. In
certain regions of the state space, depicted in white, the best action is to discontinue the advisory.

Figure 22(b) is the optimal policy computed using the quadratic pilot response model. The
policy is similar to that of the first plot. Because the pilot will continue to follow the descend
advisory with probability 3/4 even after it is switched to a climb, the reversal region has been
expanded to allow additional time for the pilot to reverse and prevent NMAC. The reversal region
is smaller for the linear model because the pilot will become unresponsive to all advisories with
probability 3/4 when the reversal is issued, which proves to be a much safer course of action than
continuing the descent.

The purple region in Fig. 22(b) marks the places in the state space where the optimal action is
to strengthen the descent. This region is absent in the first plot because the response of the pilot to
strengthenings, together with the strengthening cost, makes continuing the advisory more advanta-
geous than strengthening. Namely, because the pilot ignores all advisories with probability 3/4 and
responds only with probability 1/4 after the strengthening is issued, it is unlikely that strengthen-
ing can improve safety, especially when NMAC is imminent. The probability of responding to the
strengthening is also 1/4 in the quadratic model. However, because the pilot continues his descent
with probability 3/4, the probability of strengthening, though the same, causes strengthening to
have a lower expected cost than continuing the descend advisory.

6.3 BELIEF STATE FILTERING

During the online execution of the logic, determining the alert to issue at each time step requires
knowledge of the state of the resolution advisory, sRA. Unlike deterministic pilot response, even
in the absence of sensor noise, there is uncertainty as to whether the pilot is responding to an
advisory, thus making sRA not fully observable. Instead, a probability distribution, or belief state,
over possible values of sRA must be maintained to summarize the beliefs regarding the response
of the pilot to advisories. As new observations of the aircraft state are made each time step, the
belief state b(sRA) is recursively updated using standard model-based filtering techniques. The
belief state is initialized at t = 0 to b0(COC/COC) = 1. For all subsequent time steps t > 0, the

49



DES1500

SCL1500

COC

0 5 10 15 20 25 30 35 40
−1000

−500

0

500

1000

τ (s)

h
(f
t)

(a) Linear pilot response model.

DES1500

SDES2500

SCL1500

COC

0 5 10 15 20 25 30 35 40
−1000

−500

0

500

1000

τ (s)

h
(f
t)

(b) Quadratic pilot response model.

Figure 22. Optimal action plots for ḣ0 = 0 ft/min, ḣ1 = 0 ft/min, and sRA = DES1500/DES1500.
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belief state is updated as follows:

bt(s′RA) ∝
∑
sRA

p(ḣ′0 | ḣ0, sRA, a)T (sRA, a, s′RA) bt−1(sRA), (29)

where p(· | ḣ0, sRA, a) represents the probability density of the own aircraft vertical rate at time
t conditioned on the previously observed vertical rate, ḣ0, the action taken, a, and the advisory
state, sRA. This density is evaluated at the observed vertical rate at the current time, ḣ′0. After
each iteration of the filtering process, the action to take accounts for the likelihood of different
responses using the QMDP approximation [30]:

π∗(b) = arg min
a

∑
s

b(s)J∗(s, a). (30)

This filtering approach relies on a model of how pilots respond to advisories. If the model is
not reflective of reality, the filtering may become unstable as the model fails to explain unexpected
observations. It is important, therefore, to design and vet a pilot response model that captures a
wide spectrum of pilot behavior.

Advisory belief updating using a Bayesian framework is one way of monitoring the progression
of the encounter. TCAS, similarly, makes accommodations to handle situations when the own
aircraft is moving counter to the current advisory. In such a situation, if certain requirements are
met, the advisory will be reversed to prevent potentially dangerous vertical chases. One strength
of the current approach, however, is that the introduction of specialized heuristics is unnecessary.

6.4 EXAMPLE ENCOUNTER

Figure 23 shows an example encounter comparing the behavior of the DP logic using probabilistic
pilot response with that of TCAS. The logic was optimized using the quadratic pilot response model.
The encounter was generated using the correlated encounter model. In this example encounter,
although the logic is optimized using a probabilistic pilot response model, the pilot responds to all
initial advisories in exactly five seconds and to all subsequent advisories in exactly three seconds.

Figure 24 shows the sRA belief state throughout the course of the example encounter. Fig-
ure 25 shows the evolution of the entry time distribution. The entry time distribution was computed
using the white-noise horizontal model with an acceleration standard deviation of 3 ft/s2 and an
expanded horizontal NMAC region of 1000 ft.

Nineteen seconds into the encounter, the DP logic issues a descend to pass below the intruder.
The expected cost for issuing a descend advisory is approximately 0.043, lower than the expected
cost for issuing a climb advisory (0.054) or for not issuing an advisory (0.046). After the descend
advisory is issued, as Fig. 24 illustrates, the probability distribution over sRA indicates that with
probability 5/6 the own aircraft is not executing the descend advisory and with probability 1/6
it is executing it. These are the probabilities of not executing and executing an initial advisory
according to the model, respectively.
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Figure 23. Example encounter comparing the performance of the DP logic optimized using the quadratic pilot
response model with that of TCAS.
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Figure 24. Advisory belief state over time for the example encounter.

Two seconds after the descend advisory is issued, the system strengthens the advisory. At
the following time step, the probability distribution over sRA reveals that the own aircraft is un-
responsive to the strengthening with approximately 3/4 probability, which again represents the
probability of not executing a subsequent advisory. With approximately 1/4 probability the own
aircraft is responding to the strengthening and with a very small probability (on the order of 10−6),
not shown, the own aircraft is following the initial descend advisory. As the own aircraft begins to
respond to the strengthening three seconds after its issuance, the distribution is updated to reflect
this change in pilot behavior. Ten seconds after the pilot begins responding, it is believed that the
own aircraft is responding to the strengthening with probability 0.9. The entry time distribution
falls off quickly as the aircraft come within close proximity laterally.

The DP logic discontinues the advisory at t = 34 s, and the belief state over sRA quickly
changes in response to the own aircraft leveling off. The aircraft are vertically separated by 441 ft
at the point of minimal horizontal separation (368 ft), and an NMAC does not occur.

TCAS also initially issues a descend advisory, six seconds after the DP logic, and then
strengthens four seconds later. The alerts come too late, and an NMAC results at t = 39 s.

6.5 SIMULATION RESULTS

Table 8 summarizes the results of evaluating the DP and TCAS logics on 500,000 encounters
generated by the correlated encounter model. The performance of the DP logic optimized using
three different pilot response models—deterministic, linear, and quadratic—was assessed. These
three systems, together with TCAS, were tested in three operating environments: one with a
deterministic pilot response, one with a linear probabilistic pilot response, and one with a quadratic
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Figure 25. Entry time distribution over time for the example encounter.

probabilistic pilot response. The table compares the probabilities of certain events, such as an
NMAC and an alert. The mean number of times the advisory is changed, E[RA changes], and the
mean amount of time the systems spend alerting, E[RA duration], are also shown. Ensuring these
two metrics stay low is critical to operational acceptability.

The following observations are worth mentioning:

1. The logic optimized through dynamic programming resolves more NMACs than TCAS while
alerting less often. Although the DP logic does strengthen more frequently, the strengthening
cost can be increased until a sufficiently low level of strengthening is achieved.

2. The logic computed using the deterministic model has an increased probability of NMAC
when operating in a different environment than the one for which the logic is optimized.
The logic computed using probabilistic pilot response appears less sensitive to unmodeled
behavior.

3. The linear and quadratic DP logics perform comparably in almost every category despite
the structural differences in the pilot response models used to compute them. Quadratic DP
strengthens more often, as might be expected based on Fig. 22.

The standard errors associated with the estimates of Table 8 were also calculated and were
found to be small in relation to the actual estimates. The standard error, on average, was 10.08%
the size of the estimate, indicating a reasonable level of accuracy in the estimation of the metrics.

Figure 26 shows the probability distributions for the number of advisory changes and the
advisory duration for both the TCAS logic and the DP logic optimized using the linear pilot
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TABLE 8

Performance metrics for different pilot response models

Pr(NMAC) Pr(Alert) Pr(Strengthening) Pr(Reversal) E[RA changes] E[RA duration]

Lin.

Quad.

Det.

Lin. DP Quad. DP Det. DP TCAS

Note: The four bars in each cell of this table are normalized so that the relative performance of the four
systems are more easily compared.

response model, evaluated on the linear pilot response model. Figure 26(a) shows that the DP
logic changes the advisory less frequently than TCAS. Figure 26(b) indicates that the DP logic
displays advisories for a shorter duration than TCAS.

6.6 DISCUSSION

This section presented extensions to the logic of the previous sections to include probabilistic pilot
response models. Two Markov chain models were examined. Future work could explore the use
of other models. In the two models presented in this section, when an advisory is issued, the
pilot could respond to the advisory, continue following his current advisory (if any), or choose to
ignore all advisories. They do not explicitly model situations in which the pilot runs counter to the
advisory on display or situations in which the pilot may take a course of action vastly different than
ones suggested by the advisories. They also do not model the pilot responding to advisories with
a variety of different strengths. A collection of recorded radar data from TCAS-equipped aircraft
can be used to construct a pilot response model that would be more representative of the actual
response of pilots in the airspace.
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7. STATE ESTIMATION

The previous sections discussed solutions to the collision avoidance problem in the absence of sensor
error. Because real surveillance systems are imperfect, it is important to account for state uncer-
tainty. As discussed in Section 2.2, solving for the optimal policy for a POMDP that accounts for
imperfect observations generally requires approximation. This section applies the QMDP approx-
imation method suggested in Section 2.3 to account for state uncertainty in a collision avoidance
system.

As discussed earlier, the QMDP method uses the state-action costs JMDP(s, a) over the un-
derlying MDP states s to approximate the cost function J(b, a) over belief states b. In particular,

J(b, a) =
∑
s

b(s)JMDP(s, a). (31)

That is, the expected cost when starting in belief state b, taking action a, and then continuing
with the optimal policy is estimated by the expectation over the belief state of the state-action
costs assuming no state uncertainty. Thus, under this approximation, the current uncertainty in
the state, as encoded by b, is accounted for when choosing actions, but all future uncertainty
is disregarded. Because the choice of advisory makes little difference in the reduction in state
uncertainty, this approximation is expected to perform well.

7.1 SENSING

The sensor model used in this report is based on the current TCAS sensor. The sensor measures
the slant range and bearing of all nearby intruder aircraft. The slant range error is modeled as a
zero-mean Gaussian with 50 ft standard deviation. The bearing error is modeled as a zero-mean
Gaussian with 10° standard deviation. There is no jitter in the intruder altitude measurements, but
they are quantized at 25 ft intervals. It is assumed that the own altitude, vertical rate, and heading
are provided by the onboard avionics without error. The model does not account for biases.

7.2 STATE ESTIMATION PROCESS

The belief state is updated recursively using all measurements up to and including the current
time. Figure 27 outlines the steps in the state estimation process. Upon receipt of the first set of
measurements, the state estimator, using the information provided in the first measurements and
any prior knowledge about the state, computes the posterior state distribution, which reflects all
present knowledge about the state given all information up to and including the present time. The
state estimation component uses a sensor model together with a dynamic model to perform the
estimation. As new information becomes available, a new posterior distribution is calculated, using
the previous posterior distribution as the prior. State estimation using the Kalman filter follows
this general flow. A Kalman filter performs Bayesian recursive estimation using Gaussian posterior
distributions [44–46].
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Figure 27. State estimation process.

The belief state is constructed using a composition of several different processes. Each process
produces a collection of samples with associated probabilities representing different portions of the
total belief state. The belief state is the Cartesian product of the collection of samples from all
processes, representing the joint distribution over the following variables: h, ḣ0, ḣ1, sRA, r, rv, and
θv. These individual processes are enumerated below.

1. Using observations of the slant range, bearing, and altitude of the intruder, as well as obser-
vations of the own altitude and heading, an unscented Kalman filter is used to estimate the
Gaussian posterior distribution over the variables descriptive of the relative horizontal motion.
Sigma-point samples from this distribution are drawn with associated weights, which are in-
terpreted as probabilities. Each sample is converted into the three-dimensional representation
consisting of r, rv, and θv.

2. Another Kalman filter is used to estimate the Gaussian posterior of the intruder altitude
and vertical rate given observations of intruder altitude. Because it is assumed that the own
altitude and vertical rate are noiseless, no estimation is required for those quantities. The
relative altitude h is estimated by the maximum a posteriori estimate of the intruder altitude
from the Kalman filter minus the own altitude measurement. The intruder vertical rate ḣ1 is
estimated by the maximum a posteriori estimate of the intruder vertical rate from the Kalman
filter. Because uncertainty in the intruder altitude and vertical rate is not projected to be
significant, the maximum a posteriori estimates were used instead of the entire distribution
in order to reduce computation time.

3. The own vertical rate is used to estimate the distribution over the advisory state variable
sRA according to Eq. (29). Because the posterior distribution of sRA is discrete, the set of
points on the support of the distribution serves as a collection of samples with their associated
probabilities.

Further details regarding Kalman filtering as well as the details of the filters particular to this work
can be found in Appendix B.
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7.3 SIMULATION RESULTS

The DP logic, extended to account for state uncertainty using the QMDP method, was evaluated in
simulation and compared against TCAS. Table 9 summarizes the results of simulating one million
encounters using the white-noise encounter model. The white-noise model used 8 ft/s2 horizontal
acceleration and 3 ft/s2 vertical acceleration standard deviations. The performance of DP using the
DP and simple entry distributions is presented alongside TCAS. The performance of the systems
without sensor noise serves as a baseline. During evaluation, the pilot responded deterministically
to advisories.

The DP logic was computed using a unit NMAC cost, an alert cost of 0.001, a reversal cost of
0.01, a strengthening cost of 0.009, and a clear-of-conflict reward of 1× 10−6. Five terminal cycles
were used. The logic was optimized using deterministic pilot response. The same entry distribution
as in Section 6 was used.

The DP logic outperforms TCAS on all metrics except for strengthening. Even with the level
of sensor noise expected by the current TCAS sensor, the DP logic still leads to greater safety while
alerting less frequently. The DP logic also, on average, disrupts the pilot with fewer changes to the
advisory and keeps advisories on display for a shorter period of time.

Table 10 summarizes the same performance metrics, this time estimated using the correlated
encounter model. The DP logic was optimized using an alert cost of 0.01, keeping all other pa-
rameters the same. In realistic encounter scenarios with realistic levels of sensor noise, the DP
logic is twice as safe as TCAS even though it alerts less than half the time. Figure 28 shows the
convergence curves for several metrics from the tables.

7.4 SENSOR NOISE ROBUSTNESS

Because the sensor error may deviate significantly from the sensor error model assumed in Sec-
tion 7.1, it is necessary for the logic to be robust to different degrees of state uncertainty. Figure 29
illustrates the effect bearing noise has on the probability of NMAC and of alert for both the DP
logic and TCAS. The bearing sensor introduces the most noise in the state estimates, and it is used
directly to estimate the DP entry distribution.

The TCAS logic is relatively insensitive to bearing noise because bearing measurements are
only used to disable alerting in situations where the projected miss distance is large. The DP logic
using the simple entry distribution is also relatively insensitive because it, like TCAS, uses range
and range rate to estimate τ . The DP logic using the DP entry distribution is most sensitive to
bearing noise because it uses bearing measurements to localize the intruder. In simulations using
the correlated encounter model, performance is not significantly degraded with increased noise.
The DP logic still results in fewer NMACs and fewer alerts than TCAS. The DP logic appears to
be more sensitive to bearing error when evaluated on white-noise encounters. This is due to the
fact that many of the white-noise encounters are head-on. A high level of sensor noise causes the
system to misjudge the intruder heading and therefore not alert even when the intruder poses a
significant threat.
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TABLE 9

Performance evaluation on the white-noise encounter model

TCAS Sensor Perfect Sensor

DP/DP Entry DP/Simple Entry TCAS DP/DP Entry DP/Simple Entry TCAS

Pr(NMAC) 2.90 · 10−5 8.00 · 10−6 7.54 · 10−5 1.00 · 10−6 1.00 · 10−6 6.10 · 10−5

Pr(Alert) 7.51 · 10−1 9.00 · 10−1 9.94 · 10−1 7.16 · 10−1 9.91 · 10−1 9.94 · 10−1

Pr(Strengthening) 1.78 · 10−1 1.23 · 10−1 6.57 · 10−2 7.03 · 10−2 6.63 · 10−2 6.18 · 10−2

Pr(Reversal) 9.40 · 10−3 4.16 · 10−3 1.91 · 10−1 2.66 · 10−3 3.29 · 10−4 1.93 · 10−1

E[RA changes] 1.01 · 100 1.10 · 100 2.08 · 100 8.31 · 10−1 1.02 · 100 2.07 · 100

E[RA duration] 1.15 · 101 1.94 · 101 3.96 · 101 1.32 · 101 2.65 · 101 3.99 · 101

TABLE 10

Performance evaluation on the correlated encounter model

TCAS Sensor Perfect Sensor

DP/DP Entry DP/Simple Entry TCAS DP/DP Entry DP/Simple Entry TCAS

Pr(NMAC) 6.98 · 10−5 3.40 · 10−5 1.43 · 10−4 6.06 · 10−5 3.70 · 10−5 1.54 · 10−4

Pr(Alert) 2.01 · 10−1 3.92 · 10−1 5.03 · 10−1 1.16 · 10−1 4.02 · 10−1 4.66 · 10−1

Pr(Strengthening) 1.07 · 10−1 5.33 · 10−2 1.18 · 10−2 5.35 · 10−2 2.63 · 10−2 1.18 · 10−2

Pr(Reversal) 7.99 · 10−4 1.88 · 10−3 3.26 · 10−3 2.60 · 10−4 1.70 · 10−3 2.63 · 10−3

E[RA changes] 3.22 · 10−1 4.47 · 10−1 6.56 · 10−1 1.75 · 10−1 4.37 · 10−1 6.05 · 10−1

E[RA duration] 2.46 · 100 8.14 · 100 1.10 · 101 1.48 · 100 8.13 · 100 1.04 · 101
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7.5 DISCUSSION

This section considered the extension of the logic presented in previous sections to account for
state uncertainty using the QMDP method. The method was evaluated using the TCAS sensor
with realistic sensor noise parameters. The results of simulations of realistic encounter scenarios
suggest that the method works well, surpassing the performance of TCAS in terms of safety and
other operational considerations.

Future work could explore the use of other approximation methods and sensor systems. For
example, exploitation of GPS-based systems that have the potential of providing more accurate
position estimates as well as velocities is likely to enhance the performance of the dynamic program-
ming logic. The measurements from such systems can also be used to supplement the information
currently provided by TCAS, thus improving its performance. It is important to note that the
methodology proposed in this section can accommodate different sensor systems, as the solution
of the MDP remains the same regardless of the particular sensor suite installed on the aircraft; no
additional offline development is required.
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8. COORDINATION

The formulation of the collision avoidance problem in the previous sections assumed that the own
aircraft, equipped with a collision avoidance system, encountered a single unequipped intruder. The
collision avoidance system could influence the trajectory of the own aircraft by issuing advisories
to the pilot, but it could not influence the intruder aircraft. In situations where both aircraft are
equipped with collision avoidance systems, it is important that the advisories be coordinated to
reduce the risk of inducing collision.

One way to model the problem of coordinating resolution maneuvers over a communication
channel between multiple aircraft equipped with the same system is as a decentralized POMDP with
communication (Dec-POMDP-Com), but solving them optimally is infeasible in general [47–49].
This section discusses a variety of different coordination strategies that differ in the policies they
compute offline, their state estimation method, and how they select actions. These strategies are
not necessarily optimal but they provide a lower NMAC rate and alert rate than the coordination
strategy embedded in TCAS.

8.1 TCAS COORDINATION

TCAS coordinates with other TCAS-equipped aircraft. Upon selecting an advisory against a par-
ticular TCAS-equipped intruder, TCAS transmits a coordination interrogation to the intruder,
called a Vertical Resolution Advisory Complement (VRC), through a dedicated communication
channel restricting the set of advisories from which the intruder TCAS can choose. For example, if
TCAS selects a climb advisory against the intruder, it sends a message to the intruder containing
a “Do Not Climb” VRC. The VRC is used by the intruder to select a compatible advisory. When
the intruder is no longer deemed a threat, TCAS sends a Cancel Vertical Resolution Advisory
Complement (CVC) message canceling the previous VRC message. Also contained in the coordi-
nation message sent to the intruder is a parity field, called the Vertical Sense Bits (VSB) field. The
intruder checks to see if the VSB field is consistent with the VRC and CVC fields before using the
coordination information in the logic.

8.2 POLICY

Several different strategies may be used to formulate the MDP to be solved offline by DP. This
section discusses three broad categories.

Joint Policy

A coordinated encounter between two aircraft with full state observability can be modeled as a
multi-agent MDP (MMDP). An MMDP extends an MDP by allowing for a finite set of agents,
each with a finite set of available actions. The joint action space is the Cartesian product of the
action spaces of the individual agents. The state space is the set of all joint states, and the transition
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and cost functions are defined over these joint state and action spaces. In an MMDP, each of the
agents can fully identify the true state through the use of its own observations.

An MMDP can be reduced to a single-agent joint MDP over the joint state and action spaces.
For a coordinated encounter, the action space is the set of all joint aircraft actions, such as DES1500
for one aircraft and CL1500 for the other. The state space is the set of all joint aircraft states.
Extending the MDP introduced in Section 3 to an MMDP requires augmenting the advisory state
variable sRA to contain all information regarding the response of both pilots to their respective
advisories. The cost function should also be amended so that cost is incurred when the other
aircraft alerts, strengthens, or reverses. The MDP for the coordinated encounter generally consists
of more states and actions than for the uncoordinated encounter. The solution to the joint MDP is
a joint policy that specifies the actions for both aircraft from every state. So long as the size of the
problem does not become too large, solving for the optimal joint policy can be done offline using
DP.

So long as computation and storage are not an issue, there is no harm in including in the
joint action space all possible action pairs, including CL1500/CL1500. During the optimization,
however, such incompatible action pairs would be assigned higher expected cost compared to other
actions because they do not aid in reducing separation. Consequently, those incompatible actions
would never be selected. To reduce the computational and storage requirements, these incompatible
actions can be eliminated from consideration in the first place. Restricting the set of available joint
advisories results in a smaller action space as well as a smaller state space. The number of states
is reduced because the advisory state variable can assume fewer values.

The set of joint actions can be restricted even further by assuming that both aircraft issue
initial alerts, reversals, and strengthenings at the same time. This reduced action set will be referred
to as the synchronous action set and will be used to generate the results later in this section. The
synchronous action set does not contain actions for which one of the aircraft alerts while the other
one does not, although it might be beneficial to include such joint actions if it is possible to prevent
NMAC reliably through the maneuvering of only one aircraft. A desirable property of the joint
MDP with the synchronous action set is that it has the same number of states and actions as the
MDP modeling the uncoordinated encounter when using the deterministic pilot response model.

Figure 30 shows the joint policy for two slices of the state space using the synchronous action
set, deterministic pilot response, and five terminal cycles. As the figure shows, the alert regions
with coordination do not extend as far to the right as the alert regions of the uncoordinated policy
(Fig. 20).

Uncoordinated Policy

Instead of using the joint policy, the uncoordinated policy can be used. The assumption in the
uncoordinated policy is that the intruder never follows any advisories, which is the assumption
the current TCAS logic uses. However, instead of using linear projection like TCAS, the MDP
uncoordinated formulation models the intruder following a white-noise acceleration model. The
uncoordinated policy will tend to alert earlier and more often than the joint policy because it does
not model the increased safety benefit due to the intruder responding to advisories.
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action indicates own aircraft action followed by intruder action.
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If both aircraft use the uncoordinated policy, most of the time they will issue compatible
advisories when there is no sensor noise. However, it is easy to construct situations where, in
the absence of communication, the aircraft issue incompatible advisories even with perfect state
information. For example, if the aircraft are co-altitude, level, and neither system has issued
an advisory, both aircraft will be in the same state and, consequently, issue identical advisories.
When there is sensor noise, the aircraft can have different views of the world, resulting in the
issuance of more incompatible advisories. Communicating intended advisories between aircraft
during execution can help resolve this issue.

Communication Policy

The problem with the uncoordinated policy is that it does not account for the other aircraft
following their advisories. However, the uncoordinated model can be augmented to include the
joint advisory state. During execution, updating the posterior distribution over the joint advisory
state would involve taking into account the advisory being executed by the intruder as inferred
from the coordination message. The coordination scheme currently used by TCAS does not allow
the exact advisory of the intruder to be communicated, only the complement of the sense employed
by the aircraft. However, the VRC can be used to infer a distribution over the intruder advisories
and, consequently, the posterior over the joint advisory state.

Introducing the joint advisory state as a state variable in the MDP requires defining its
dynamics. One way to do this is to assume that the intruder will continue executing its active
advisory indefinitely. Although, in reality, the intruder may reverse, strengthen, or discontinue the
advisory, modeling the intruder advisory as constant may still result in a sensible policy. Usually,
advisories do not have to be reversed. If the intruder strengthens, it will only result in greater
separation between the aircraft, so modeling the intruder as performing a less severe maneuver will
only result in more conservative behavior. If the intruder discontinues the advisory, it is usually
because the probability of collision at that point is negligible.

Assuming the intruder continues executing the same action indefinitely makes specifying the
model very simple. It requires defining Pr(s′RA | sRA, a), where s′RA is the joint advisory state at the
next step, sRA is the current joint advisory state, and a is the action executed by the own aircraft.
If it is important to model changes in the advisory of the intruder, it can be done by introducing
a dependence on the other state variables: h, ḣ0, ḣ1, and τ . These other state variables influence
the action taken by the intruder and, consequently, sRA at the next step. It is not expected that
the optimized policy will be overly sensitive to the action model of the intruder. The action model
could be based on the uncoordinated policy, the joint policy, or the policy of any system (e.g.,
TCAS) with which the system must interoperate.

8.3 STATE ESTIMATION

State estimation is an important issue in encounters where both aircraft are equipped with a
collision avoidance system. If the two aircraft have inconsistent views of the world due to sensor
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noise and they do not coordinate their maneuvers, it can lead to an induced collision. This section
discusses several ways of performing state estimation.

Independent State Estimation

Different aircraft receive separate sensor measurements, and noise in these measurements results
in different state estimates. Most of the time, the belief states between aircraft are relatively
consistent. However, there is a risk that the two aircraft in the encounter will have different and
incompatible views of the world. For example, both aircraft may believe that they are at the higher
altitude, and both issue climb advisories, potentially inducing collision.

TCAS uses independent state estimation, but when there is disagreement between aircraft
that results in the aircraft choosing the same sense, it uses a tie-breaking scheme. Each aircraft
is assigned a unique 24 bit ICAO (Mode S) address, which is broadcast over the communication
channel. If an aircraft encounters another aircraft with a lower ICAO address that selects the same
sense, it will reverse its sense. Choosing the exact advisory that is compatible with the coordinated
sense is done using individual sensor information. A similar strategy can be employed with logic
generated by DP.

Fused State Estimation

If communication bandwidth were not an issue, aircraft could broadcast their measurements. Each
aircraft would then use all of the measurements to update its individual state estimates, providing
a unified view of the airspace. Unfortunately, the current bandwidth allocated for coordination is
insufficient for transmitting accurate measurements. There is also the risk of measurements being
corrupted in transit. Although fused state estimation is not feasible, it is worth mentioning because,
in theory, it is the best possible strategy with perfect communication.

8.4 ACTION SELECTION

During execution, the various policies computed offline (Section 8.2) can be adapted to account for
coordination messages between aircraft.

Independent Action Selection

The simplest strategy is to simply execute the policy directly using the current state estimate
without any regard for the actual advisories being executed by the other aircraft. As mentioned
earlier, this can lead to induced collisions if the aircraft have inconsistent views of the world or
if the uncoordinated policy is used. To assess the value of coordination, the experiments in this
section include independent action selection strategies.

Centralized Action Selection

One way to ensure the selection of compatible actions is to have the aircraft with the lower ICAO ad-
dress dictate the actions for both aircraft. However, adopting this strategy would require changing
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the semantics of the current TCAS coordination messages, which only communicate the advisory
sense complements, not actual advisories. Another weakness of this strategy is that it uses only
the measurements obtained by the aircraft with the lower ICAO address to make decisions, but
aircraft are able to measure their own altitude and vertical rate with greater accuracy.

A centralized strategy requires aircraft with higher addresses to trust those with lower ad-
dresses. If the sensors on the aircraft with the lower address are faulty or if any other components
of the collision avoidance system are not working properly, the action transmitted to the other
aircraft can be disastrous. One way to help mitigate such situations is for the aircraft with the
higher address to sanity-check the action it receives. If the cost of the prescribed action is sig-
nificantly higher than the cost of other actions, then the aircraft should execute the lowest cost
action. Selecting an action that is contrary to the one assumed by the other aircraft is very risky;
it should only be done in extraordinary situations when the prescribed action is anticipated to lead
to collision.

Compatibility Action Selection

Another strategy is to force the aircraft with the higher ICAO address to select a compatible
action. If there are multiple compatible actions, then the one with the lowest expected cost is
selected. Of course, the expected costs are computed assuming that future actions are unimpeded
by compatibility restrictions dictated by another aircraft with a potentially different state estimate.
Although the expected costs may be inaccurate, performance is not expected to be significantly
impaired. The current TCAS logic uses forced compatibility, although it does not choose compatible
actions based on expected cost.

8.5 EXAMPLE ENCOUNTER

Figure 31 shows an example encounter simulated from the correlated encounter model. Both
aircraft are equipped with the TCAS-like sensor. The performance of TCAS is compared with
two coordination strategies. The first strategy, Joint-Indep, consists of using the joint policy with
independent action selection based on independent state estimation. Each aircraft maintains a
belief state inferred from its own observations, computes the joint action, and selects its portion of
the joint action. The second strategy, Joint-Cent, consists of using the joint policy with centralized
action selection based on independent state estimation. The aircraft with the lower ICAO address
computes the joint action using the belief state inferred from its own observations, selects its portion
of the joint action, and transmits the other portion to the other aircraft. In Fig. 31(a), the aircraft
approaching from the left has the lower ICAO address. It will be referred to as Aircraft 1; the other
aircraft will be referred to as Aircraft 2.

Because the aircraft can disagree about the belief state, the Joint-Indep strategy can poten-
tially cause the aircraft to issue incompatible advisories. Indeed, at t = 24 s both aircraft receive
descend advisories because they both believe they are at the higher altitude. An NMAC occurs at
t = 40 s; the aircraft come within 15 ft vertically and 356 ft horizontally. In the Joint-Cent strategy,
however, because the action selection is centralized, the maneuvers are compatible. At t = 23 s,
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Aircraft 1 issues a descend advisory and transmits a climb advisory to Aircraft 2, which receives
it one second later. At the next time step, both advisories are strengthened. The advisories are
weakened nine seconds later. The aircraft safely pass each other. TCAS, similarly, selects the same
senses: TCAS commands Aircraft 1 to descend at t = 30 s and Aircraft 2 to climb at t = 31 s. The
aircraft come within 87 ft vertically and 316 ft horizontally.

8.6 SIMULATION RESULTS

The following three coordination strategies were evaluated in the absence of sensor noise on 500,000
encounters from the correlated encounter model:

• joint policy / independent action selection (Joint-Indep),

• uncoordinated policy / independent action selection (Uncoord-Indep), and

• uncoordinated policy / compatibility action selection (Uncoord-Compat).

The policies were generated using the same model parameters and costs from Section 5 with the
addition of five terminal cycles and no clear-of-conflict reward. The entry distribution is identical
to the one used in Section 6 and Section 7. The results are summarized in Table 11, which shows
the probability of NMAC and other alert metrics for both aircraft (denoted AC1 and AC2).

TABLE 11

Performance evaluation of coordination strategies with no noise

Joint-Indep Uncoord-Indep Uncoord-Compat TCAS

Pr(NMAC) 7.67 · 10−6 6.97 · 10−6 2.70 · 10−6 1.20 · 10−5

Pr(AC1 alert) 1.70 · 10−1 2.50 · 10−1 2.50 · 10−1 4.77 · 10−1

Pr(AC2 alert) 1.70 · 10−1 2.50 · 10−1 2.50 · 10−1 4.74 · 10−1

Pr(AC1 strengthening) 5.60 · 10−3 5.90 · 10−3 7.90 · 10−3 6.78 · 10−3

Pr(AC2 strengthening) 5.60 · 10−3 5.80 · 10−3 6.80 · 10−3 7.74 · 10−3

Pr(AC1 reversal) 1.94 · 10−5 5.04 · 10−4 2.51 · 10−5 3.91 · 10−3

Pr(AC2 reversal) 1.94 · 10−5 6.03 · 10−4 1.67 · 10−4 9.17 · 10−3

E[AC1 RA changes] 1.80 · 10−1 2.57 · 10−1 2.56 · 10−1 6.48 · 10−1

E[AC2 RA changes] 1.80 · 10−1 2.59 · 10−1 2.62 · 10−1 6.56 · 10−1

E[AC1 RA duration] 2.30 · 100 4.59 · 100 4.60 · 100 1.08 · 101

E[AC2 RA duration] 2.30 · 100 4.64 · 100 4.60 · 100 1.07 · 101

The Joint-Indep strategy outperforms TCAS on all metrics: Joint-Indep is almost twice as
safe and alerts almost three times less frequently. Because there is no sensor noise, Uncoord-Indep
is just as safe as Joint-Indep but at the expense of more alerts. The Uncoord-Compat strategy is
over twice as safe as Uncoord-Indep with the same alert rate. This is because Uncoord-Compat,
unlike Uncoord-Indep, ensures compatibility. Uncoord-Compat is over four times safer than TCAS
while alerting almost half the time.
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Figure 31. Example coordinated encounter comparing the performance of DP coordination strategies with
TCAS.
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The following four coordination strategies were evaluated with sensor noise (Section 7.1) on
the same encounters selected from the correlated encounter model:

• joint policy / independent action selection (Joint-Indep),

• uncoordinated policy / independent action selection (Uncoord-Indep),

• joint policy / centralized action selection (Joint-Cent), and

• uncoordinated policy / compatibility action selection (Uncoord-Compat).

The results are summarized in Table 12.

TABLE 12

Performance evaluation of coordination strategies with the TCAS sensor

Joint-Indep Uncoord-Indep Joint-Cent Uncoord-Compat TCAS

Pr(NMAC) 1.65 · 10−4 3.04 · 10−5 1.51 · 10−5 6.77 · 10−6 1.37 · 10−5

Pr(AC1 alert) 2.97 · 10−1 4.07 · 10−1 3.05 · 10−1 4.07 · 10−1 5.12 · 10−1

Pr(AC2 alert) 2.93 · 10−1 4.10 · 10−1 3.04 · 10−1 4.10 · 10−1 5.09 · 10−1

Pr(AC1 strengthening) 1.74 · 10−2 1.92 · 10−2 1.84 · 10−2 1.87 · 10−2 6.54 · 10−3

Pr(AC2 strengthening) 1.48 · 10−2 1.76 · 10−2 1.84 · 10−2 2.00 · 10−2 8.01 · 10−3

Pr(AC1 reversal) 8.99 · 10−4 5.00 · 10−3 1.53 · 10−4 1.40 · 10−3 3.60 · 10−3

Pr(AC2 reversal) 6.92 · 10−4 3.90 · 10−3 1.53 · 10−4 1.90 · 10−3 7.16 · 10−3

E[AC1 RA changes] 3.27 · 10−1 4.31 · 10−1 3.36 · 10−1 4.26 · 10−1 6.94 · 10−1

E[AC2 RA changes] 3.19 · 10−1 4.28 · 10−1 3.41 · 10−1 4.36 · 10−1 7.07 · 10−1

E[AC1 RA duration] 4.73 · 100 8.44 · 100 4.84 · 100 8.48 · 100 1.13 · 101

E[AC2 RA duration] 4.57 · 100 8.38 · 100 4.83 · 100 8.41 · 100 1.13 · 101

The Joint-Indep strategy performs markedly worse than TCAS. Because the aircraft can
disagree over the belief state, they can issue incompatible advisories that if followed lead to collision.
The Uncoor-Indep strategy, though it also has the potential of issuing incompatible advisories, is
safer than Joint-Indep because it alerts earlier, perhaps allowing additional time to reverse the
advisory if necessary. Joint-Cent, which solves this problem in part by using only the belief state
of the aircraft with the lower address, has an NMAC probability ten times lower than Joint-Indep
with comparable alert probability. The Joint-Cent strategy still has a somewhat greater probability
of NMAC compared to TCAS but alerts significantly less. The Uncoord-Compat strategy is over
twice as safe as TCAS and alerts less often. One potential reason why Uncoord-Compat is safer
than Joint-Cent is because Uncoord-Compat, using the uncoordinated logic which assumes that
intruders do not maneuver to avoid collision, alerts more aggressively.

8.7 DISCUSSION

This section discussed numerous coordination strategies and presented some results indicating that
new coordination techniques based on solving MDPs can exceed the level of safety provided by
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the current TCAS logic with less disruption to the pilots. This section demonstrated that, in the
presence of realistic sensor noise, the Joint-Cent and Uncoord-Compat strategies are viable methods
of achieving coordination. Future work will examine the use of incorporating communication into
the model. This section only considered evaluation of the joint MDP using the synchronous action
set. Future work could reveal the extent to which strategies that use the solution of the joint MDP
can be improved through the use of different joint action spaces.

The Uncoord-Compat strategy may be the most appealing way of providing coordination
because it can preserve the current communication mechanism of TCAS. The future system would
transmit VRC messages potentially inhibiting the advisories from which the intruder could select.
An intruder equipped with the same system or with any prior version of the TCAS logic would be
able to process the coordination message. Though the Uncoord-Compat strategy does not represent
the optimal solution to the problem of coordination, it has been shown to perform remarkably well in
realistic encounter situations. It does not require offline planning over the joint MDP; no additional
cost table beyond that for the uncoordinated MDP would have to be loaded on board the aircraft.
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9. MULTIPLE THREAT ENCOUNTERS

The previous sections of this report have focused entirely on resolving encounters with single in-
truders. Although encounters involving two or more intruders are relatively rare in the current
airspace, the collision avoidance logic must be robust to such situations. This section generalizes
the methods introduced earlier in this report to multithreat encounters.

Ideally, a solution would be obtained from an MDP modeling an arbitrary number of aircraft.
Unfortunately, each additional intruder would require introducing at least two variables to capture
their relative altitude and vertical rate. Intruders with collision avoidance systems would require
additional advisory state variables. Augmenting the MDP in Section 3 would require at least two
orders of magnitude more processing time to compute the optimal cost table. Storage of the table
would require at least two orders of magnitude more memory, which is not currently feasible.

One strategy for handling large MDPs is to decompose the decision making to multiple
agents [50]. In the collision avoidance problem, each agent may be assigned a particular intruder to
avoid. They independently make recommendations whether to alert and which advisory to issue,
and some strategy is employed to make the best overall decision. Several different kinds of strategies
have been proposed, including command arbitration and utility fusion. TCAS uses a method that
resembles command arbitration, but the MDP approach permits utility fusion, which may be more
appropriate for resolving multithreat encounters.

9.1 COMMAND ARBITRATION

In command arbitration, an arbiter selects one of the actions recommended by one of the agents.
One of the simplest command arbitration strategies is to accept the recommendation of the agent
whose intruder is closest. In multithreat encounters, one intruder is usually much closer than the
others, and so resolving NMACs sequentially in this manner may be satisfactory most of the time.
However, it is easy to construct situations where this strategy fails.

Figure 32 shows the action regions for the closest command arbitration strategy for an en-
counter with two approaching intruders that are equally distant from the own aircraft horizontally
and are separated from each other by 400 ft. All aircraft are currently level, and no advisory has
been issued. The actions taken by this strategy appear sensible for much of the state space. How-
ever, it does especially poorly when the own aircraft is between the two intruders in altitude. When
the own aircraft is in the position indicated in the figure, the strategy results in a descend advisory
because the closer intruder is above. This descend advisory, though, results in the aircraft de-
scending into the other intruder. Of course, the system would later reverse the advisory to prevent
collision, but this behavior is not ideal. Issuing a climb advisory or even delaying the alert would
be preferable.

TCAS adopts a more sophisticated command arbitration strategy. It treats each threat
individually, with the same threat detection, initial sense selection, and initial strength selection
logic that would be used with a single intruder. The multithreat portion of the logic attempts
to reconcile the senses and strengths associated with each intruder before displaying a composite
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Figure 32. Closest command arbitration strategy. Two intruder aircraft are on the left, and the own aircraft
is on the right. All aircraft are initially level and no advisory has been issued. The parameters from Section 3
with zero terminal cycles were used.

advisory to the pilots. When all threats have the same sense, the logic simply uses the individual
advisory with the greatest strength. When the senses of the individual advisories differ, TCAS
uses a set of rules to either (1) identify a single sense for all threats or (2) issue a “dual-negative
advisory” that places vertical speed limits in both senses.

9.2 UTILITY FUSION

Instead of making decisions based solely on the actions recommended by the agents, the utility (or,
alternatively, expected cost) each agent assigns to each action can be leveraged to arrive at a better
overall action [51]. Let J (n)(a) be the expected cost for executing action a as assigned by agent n.
This value can be interpreted as the expected cost when executing action a for one step and then
continuing with the optimal pairwise individual logic, ignoring all intruders other than intruder n.

Fusing these action costs requires defining a function f that combines the costs from all of
the agents. The action to be executed is given by

arg min
a

f(J (1)(a), . . . , J (N)(a)). (32)

There are different ways to define the combining function f , but it should have the following
properties:

• Exchangeability: f(. . . , a, . . . , b, . . .) = f(. . . , b, . . . , a, . . .) for all a and b.

• Monotonicity: f(. . . , a, . . .) ≤ f(. . . , b, . . .) for all a < b.

• One-step optimality: The recommended action should be optimal for a one-step horizon.
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One way to define f is simply as a summation [50]. However, it does not seem appropriate
to sum the immediate costs in this problem. For example, the penalty for alerting in this scheme
would be incurred for each intruder. Double counting alert costs results in delaying the alert, which
is especially undesirable in multithreat encounters. Depending on the encounter situation, it may
be important to alert earlier. Figure 33(a) shows a slice of the policy for this strategy.

Alternatively, the combining function can return the maximum expected cost. At each time
step, the strategy selects the action that guarantees the lowest expected cost against all individual
intruders in isolation. One advantage of this approach is that it does not double count the alert
costs. As shown in Fig. 33(b), this guaranteed cost strategy results in an alerting region similar
to the closest command arbitration strategy, but it does not have the issue identified earlier where
the own aircraft descends to avoid the closer intruder but results in entering the path of another
intruder.

The sum-collision/max-action (SCMA) strategy involves partitioning the expected cost due
to collision from the expected cost due to alerting.4 Given an agent n and action a,

J (n)(a) = J
(n)
collision(a) + J

(n)
action(a). (33)

DP can be used offline to compute the collision cost and the action cost for every discrete state-
action pair. The results would be stored in a table. During execution, f would combine these costs
as follows:

f(J (1)
collision(a), J (1)

action(a), . . . , J (N)
collision(a), J (N)

action(a)) =
∑
n

J
(n)
collision(a) + max

n
J

(n)
action(a). (34)

Figure 33(c) shows the alert regions for SCMA. It does not double count alert costs, but it does
sum the collision costs. Because collision with two aircraft is twice as costly as collision with one
aircraft, the alert region is enlarged.

9.3 EXAMPLE ENCOUNTER

Figure 34 exhibits the behavior of the guaranteed cost strategy and the TCAS logic in an example
multithreat encounter. The multithreat encounter was sampled from a multithreat model built from
radar data [52]. There is no sensor noise, and both intruders are unequipped. Eleven seconds into
the encounter, the DP logic issues DES1500. The expected costs for issuing DES1500, CL1500, and
COC are 0.00595, 0.00741, and 0.00601 for intruder 1, respectively. As intruder 2 is moving away
from the own aircraft, thus posing no significant threat, the expected costs are 0.001, 0.001, and 0
for intruder 2, respectively. Fourteen seconds later, the DP logic issues SDES2500. As the advisory
is later terminated, the own aircraft levels off, safely passing between both intruders in altitude.
One potential issue with the guaranteed cost strategy is that it can cause the own aircraft to pass
between the intruders, as shown in Fig. 33(b). If intruder 2 happened to be a more imminent
threat, the own aircraft would have had to climb after its descent. The TCAS logic issues CL1500
and subsequently SCL2500 to pass over both intruders, but they are too late. An NMAC occurs
with intruder 1.

4The SCMA strategy was originally proposed by Richard Williams from Lincoln Laboratory.
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Figure 33. Utility fusion strategies. Two intruder aircraft are on the left. All aircraft are initially level and
no advisory has been issued. Horizontal axis is time (s) and the vertical axis is altitude (ft). The parameters
from Section 3 with zero terminal cycles were used.
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Figure 34. Example multithreat encounter comparing the performance of a DP multithreat strategy with
TCAS.
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9.4 SIMULATION RESULTS

Table 13 and Table 14 summarize the results of evaluating the guaranteed cost and summation util-
ity fusion strategies on 500,000 multithreat encounters. In these encounters one aircraft, equipped
with the collision avoidance system, encounters two unequipped intruders. The tables summarize
the performance of the strategies in the absence of sensor noise and when the equipped aircraft
uses the TCAS-like sensor. The performance of the TCAS multithreat logic is also shown.

In Table 13, the DP logic was optimized using a clear-of-conflict reward of 1× 10−4. With
the exception of the clear-of-conflict reward, all the other parameters used to generate the logic
were identical to those used in Section 8. In both the perfect sensing and TCAS sensing scenarios,
the DP strategies resolve more NMACs than TCAS; they also issue fewer alerts. The summation
strategy results in fewer alerts, and consequently more NMACs, than the guaranteed cost strategy
because it double counts alert costs.

In Table 14, the DP logic was optimized using no clear-of-conflict reward. This has the effect of
making the DP logic safer at the expense of increasing the alert rate and the mean time for which
the system displays alerts. The guaranteed cost strategy is almost four times safer than TCAS
when there is no sensor noise and twice as safe when there is TCAS-like sensor noise. Removing
the clear-of-conflict reward also has the added advantage of generally decreasing the strengthening
and reversal rates of the DP logic.

9.5 DISCUSSION

The experiments demonstrate that combining the expected costs for individual threats can lead to
effective avoidance behavior that surpasses TCAS in safety with fewer alerts. It appears that this
approach has not been pursued in the literature for aircraft collision avoidance. Further analysis is
required to identify potential vulnerabilities of this approach. This section focused on encounters
where only a single aircraft is equipped with a collision avoidance system. Future work will involve
incorporating coordination between equipped aircraft and studying its impact on overall safety.

80



TABLE 13

Multithreat performance evaluation with clear-of-conflict reward

Perfect Sensor TCAS Sensor

Guaranteed cost Summation TCAS Guaranteed cost Summation TCAS

Pr(NMAC) 1.14 · 10−3 1.54 · 10−3 2.94 · 10−3 1.99 · 10−3 2.32 · 10−3 2.96 · 10−3

Pr(Alert) 6.07 · 10−1 5.46 · 10−1 7.47 · 10−1 7.12 · 10−1 6.38 · 10−1 7.64 · 10−1

Pr(Strengthening) 1.40 · 10−1 1.27 · 10−1 4.49 · 10−2 2.57 · 10−1 1.90 · 10−1 4.43 · 10−2

Pr(Reversal) 7.35 · 10−3 5.41 · 10−3 5.50 · 10−3 1.63 · 10−2 1.06 · 10−2 6.55 · 10−3

E[RA changes] 1.42 · 100 1.13 · 100 1.25 · 100 1.90 · 100 1.45 · 100 1.30 · 100

E[RA duration] 1.14 · 101 9.10 · 100 1.92 · 101 1.18 · 101 9.80 · 100 1.95 · 101

TABLE 14

Multithreat performance evaluation with no clear-of-conflict reward

Perfect Sensor TCAS Sensor

Guaranteed cost Summation TCAS Guaranteed cost Summation TCAS

Pr(NMAC) 8.52 · 10−4 1.06 · 10−3 2.94 · 10−3 1.42 · 10−3 1.68 · 10−3 2.96 · 10−3

Pr(Alert) 6.22 · 10−1 5.55 · 10−1 7.47 · 10−1 7.28 · 10−1 6.49 · 10−1 7.64 · 10−1

Pr(Strengthening) 4.96 · 10−2 3.89 · 10−2 4.49 · 10−2 9.00 · 10−2 6.65 · 10−2 4.43 · 10−2

Pr(Reversal) 7.37 · 10−3 5.40 · 10−3 5.46 · 10−3 1.60 · 10−2 1.03 · 10−2 6.55 · 10−3

E[RA changes] 7.06 · 10−1 6.15 · 10−1 1.25 · 100 9.06 · 10−1 7.57 · 10−1 1.30 · 100

E[RA duration] 1.49 · 101 1.16 · 101 1.92 · 101 1.85 · 101 1.52 · 101 1.95 · 101
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10. CONCLUSIONS

This report has explored the use of dynamic programming (DP) as a method for automatically
deriving robust airborne collision avoidance logic. The experiments demonstrate that this ap-
proach has the potential to significantly improve safety while reducing the rate of unnecessary
alerts compared to the current TCAS logic. In addition, the method satisfies the collection of
design considerations introduced at the beginning of the report. This section summarizes how the
approach addresses these considerations and identifies areas where further research is required.

• Safety performance. The simulations in this report demonstrate that DP can further reduce
the risk of near mid-air collision (NMAC) beyond what is currently provided by TCAS while
reducing the alert rate. The experiments were conducted using a high-fidelity encounter
model derived from nine months of national radar data, and NMAC rates were estimated from
millions of simulations. The safety provided by the DP logic is a function of the parameters
of the cost function against which the logic is optimized. The NMAC rate can be reduced
further at the expense of additional alerts, strengthenings, and reversals. Determining the cost
function parameters will be an important area of discussion within the TCAS development
community because of their impact on safety and operational performance. Further simulation
studies will better inform the choice of cost function parameters.

• Operational performance. The experiments demonstrate that the DP logic results in signifi-
cantly fewer alerts than TCAS while improving safety. In addition, the DP logic issues fewer
reversals. For the cost settings used in this report, the DP logic would strengthen its advi-
sories more frequently than TCAS. However, strengthening is a much less severe maneuver
than reversing. The cost parameters can be adjusted to reduce the rate of strengthening, but
it will be at the expense of additional alerts, additional reversals, or reduced safety. Deciding
how to balance these operational considerations will require engaging the TCAS development
community.

• Onboard computation. Since the cost tables and the entry distributions are computed offline,
very little computation is required on the aircraft. The onboard computation primarily in-
volves state estimation, table lookups, and interpolation. Many other approaches to collision
avoidance suggested in the literature require substantial online computation, which makes
them infeasible for a system that needs to update its decisions at least once per second.

• Coordination. This report discussed several coordination strategies to reduce the risk of
induced collision with other aircraft equipped with collision avoidance systems. Some of the
coordination strategies are compatible with the existing coordination mechanism used by
TCAS. Further work will be required to refine these strategies, but they have already been
demonstrated to outperform the current version of TCAS.

• Unequipped aircraft. Most of this report has focused on encounters with aircraft that are
not equipped with a collision avoidance system. It was found that the DP logic significantly
outperforms the existing TCAS logic according to both safety and operational metrics.
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• Interoperability. The introduction of a new collision avoidance system will require, at least
initially, the ability to interoperate with legacy systems. Many of the coordination strategies
suggested in this report are directly compatible with the current version of TCAS. Further
work is required to analyze the performance of the DP logic in encounters with TCAS.

• Surveillance compatibility. The DP logic can accommodate different surveillance technolo-
gies. The expected cost tables are not dependent on the sensor error model. Sensor error is
accounted for during execution. Incorporating a new sensor system would require updating
the tracker, which produces a probability distribution over the state space based on sensor
measurements. The rest of the logic that averages the expected cost over the state distribution
remains the same. Of course, not all surveillance systems provide the same level of accuracy.
If a surveillance system is introduced that provides relatively poor state estimates, the cost of
alerting should be decreased so that the safety level is not degraded. This report has focused
on the current TCAS surveillance system, but a future collision avoidance system is likely
to incorporate improved sensors that reduce the error in bearing measurement, leading to
additional performance gains.

• Aircraft performance constraints. The accommodation of aircraft performance constraints was
not a focus of this report, although DP is well suited for incorporation of such constraints.
The only performance constraint in the experiments was that the vertical rate be kept within
±2500 ft/min, but that range could have just as easily been something different to reflect the
limits of less capable aircraft. One attractive aspect of the way DP handles these constraints
is that it does not simply restrict the current space of available actions; it actually chooses
the current action with the knowledge that in the future the space of available actions will
be restricted. Aircraft with different categories of capabilities would require different cost
tables. If aircraft broadcast their performance limits, then these limitations can be taken
into account when modeling the intruder aircraft. A collection of different cost tables can
be optimized offline for different intruder capabilities, and the appropriate table would be
indexed into during flight.

• Extensibility. Changing the probabilistic model to better reflect the evolving airspace char-
acteristics and pilot behavior is relatively straightforward, and re-optimizing the logic in
response to these changes does not require any human effort. Modifying TCAS pseudocode is
much more complicated. The primary limitation of the DP approach is that the model must
be Markovian and must be capable of being approximated well by a discrete state space of
manageable size. Other DP methods could be employed besides the one used in this report
to help scale the method to more complex models.

• Validation. The validation of the DP logic will likely involve many of the same steps used
to validate TCAS, including Monte Carlo simulation and flight tests. Additional validation
techniques can be employed due to the fact that the model used by DP is Markovian. This
report showed to efficiently compute the probability of NMAC as well as other performance
metrics across the entire state space in under a minute. Performing the same computation
using Monte Carlo, which is what would be required for a logic like TCAS, would have required
months of continuous computation.
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• Verification. The correctness of a manufacturer’s implementation of the TCAS pseudocode
is verified against a set of test encounters. The DP logic can be verified in the same way.
However, just because an implementation satisfies all test cases does not mean that it is cor-
rect since it is not possible to test every possible encounter situation. With the DP logic, the
complexity of the logic can be encoded using numerical lookup tables that can be standard-
ized and delivered to manufacturers. Because there is very little code for manufacturers to
implement, there is less opportunity for errors to be introduced.

This report has answered the primary research questions left open in Project Report ATC-360,
but additional study of multiple threat encounters and interoperability is still required. Further
study will also compare the behavior of the DP logic to other approaches, such as geometric
optimization, that do not leverage probabilistic models to infer the optimal course of action. Before
committing to a particular development strategy for future TCAS it is important to evaluate the
relative merits of different approaches from the perspective of development cost and risk over the
entire life cycle of the system, in addition to anticipated safety and operational performance. A
future paper will address these issues.
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APPENDIX A
EXPECTED COST FILE FORMAT

This appendix describes the file format for the expected cost table. The expected cost table
contains the expected costs stored using the 64 bit IEEE 754-1985 double precision floating point
format. Because the number of available actions from a particular state is small compared to the
total number of actions (e.g., one cannot strengthen or reverse until an initial advisory is issued),
memory may be more efficiently utilized by only storing the costs for the available actions.

An index file is used to efficiently locate the position in the expected cost table. The index file
contains a sequence of unsigned 32 bit integers, containing offsets into the cost table. For example,
in Fig. A-1, the expected costs for the second state can be found by skipping the first three entries
in the table, corresponding to 3 × 64 bits from the beginning of the file. If more than 232 − 1
state-action pairs are needed, then the representation of the index file would need to be increased
from 32 bits. If there are N states, then there are N + 1 entries in the index file. The last entry
contains the offset to one entry past the last.

For each state, the cost table contains a sequence of values. To determine which value
corresponds to which action, a table of actions is used. Because there are no more than 255
actions, the action file uses unsigned 8 bit numbers. The action file contains the same number of
entries as the cost table, but it is eight times smaller because it uses an 8 bit instead of a 64 bit
representation.

Index file Cost file Action file

0

3

5

...

0.6255

0.6064

0.4018

0.1185

0.4054

0.7664

0.9723

...

1

2

3

1

3

5

7

...

Figure A-1. Notional diagram of expected cost file format.
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APPENDIX B
TRACKING

This appendix reviews the Kalman filter and unscented Kalman filter and discusses the horizontal
and vertical motion trackers used in the evaluation of the dynamic programming logic in Section 7.

B.1 KALMAN FILTER

The Kalman filter is a minimum mean square error (MMSE) estimator that is optimal if the initial
state of the system as well as all the noise entering the system are Gaussian. Otherwise, the Kalman
filter is the best estimator among the class of linear MMSE state estimators. This section briefly
derives the Kalman filter equations. The following discussion is adapted from [44], pp. 200–207.

Consider the following discrete-time linear dynamic system:

x(k + 1) = F (k)x(k) +G(k)u(k) +B(k)v(k), (B-1)

where x(k) ∈ Rn is the state vector at time k, u(k) is a known input (i.e., control) vector, and v(k)
is zero-mean white Gaussian process noise with covariance Q(k). The matrix F (k) is the (possibly)
time-varying system dynamics matrix, G(k) is the input gain matrix, and B(k) is the state-noise
coupling matrix. Additionally, any measurements z(k) ∈ Rm of the system are modeled by

z(k) = H(k)x(k) + w(k), (B-2)

where w(k) is zero-mean white Gaussian measurement noise with covariance R(k), and H(k) is the
measurement matrix describing the transformation from the state space in Rn to the measurement
space in Rm. Let the initial state x(0) be modeled as a Gaussian random variable with known
mean and covariance, and let the noise sequences v(k) and w(k) be mutually independent.

It can be shown that estimators that minimize the mean square error (the difference between
the true value of the state and the estimate) have as their optimal estimate at every time k the
conditional mean of the state at time k given the measurements up to and including time k. That
is,

x̂(k | k) ≡ E[x(k) | Zk], (B-3)

where x̂(k | k) denotes the state estimate at time k given all information up to and including time
k (i.e., a posterior state estimate) and Zk is the sequence of measurements up to and including
time k. For jointly distributed vectors x and z, the conditional mean is given by

x̂ = E[x | z] = x̄+ PxzP
−1
zz (z − z̄) (B-4)

and the covariance by

Pxx|z = E[(x− x̂)(x− x̂)T | z] = Pxx − PxzP−1
zz Pzx, (B-5)

where x̄ is the mean of x, Pxx is the covariance of x, Pzz is the covariance of z, and Pxz (= P Tzx) is
the cross-covariance between x and z.
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In the context of the Kalman filter, x and z would be the state and measurement vectors,
respectively. The conditional mean x̂ of Eq. (B-4) would represent the updated state estimate at
time k + 1, x̂(k + 1 | k + 1), and the mean x̄ would represent the one-step predicted state at time
k + 1 from time k, x̂(k + 1 | k). Moreover, z would be the actual measurement at time k + 1,
z(k+ 1), and z̄, the predicted measurement at time k+ 1, ẑ(k+ 1 | k). The product PxzP−1

zz , often
called the filter gain, would then be a measure of the amount of correction that would have to be
applied to x̂(k + 1 | k) due to the measurement prediction error z(k + 1)− ẑ(k + 1 | k).

The Kalman filter fundamentally consists of two steps: a predict step and an update step. In
the predict step, the state estimate at time k + 1, x̂(k + 1 | k), is predicted based on the posterior
state estimate at time k, x̂(k | k):

x̂(k + 1 | k) = E[x(k + 1) | Zk] = F (k)x̂(k | k) +G(k)u(k), (B-6)

where the term involving the noise drops out because E[v(k)] = 0 by definition. Note that in the
prediction the measurement at time k+ 1 is not used. The state prediction covariance simplifies to

P (k + 1 | k) = F (k)P (k | k)F (k)T +B(k)Q(k)B(k)T , (B-7)

where P (k | k) is the covariance of the posterior state estimate. One could predict what the
measurement at time k+ 1 would be by simply transforming the predicted state estimate to arrive
at

ẑ(k + 1 | k) = E[z(k + 1) | Zk] = H(k + 1)x̂(k + 1 | k), (B-8)

where the zero-mean noise is again not present. Similar to Eq. (B-7), the measurement prediction
covariance is given by

S(k + 1) = H(k + 1)P (k + 1 | k)H(k + 1)T +R(k + 1), (B-9)

which is equivalent to Pzz described above. Calculating the cross-covariance between the state and
measurement, Pxz, one arrives at the equation for the filter gain of the Kalman filter:

W (k + 1) = P (k + 1 | k)H(k + 1)TS(k + 1)−1. (B-10)

In the update step, the predicted state and covariance are updated using the measurement.
Using Eq. (B-4), the updated state estimate at time k + 1 is given by

x̂(k + 1 | k + 1) = x̂(k + 1 | k) +W (k + 1)ν(k + 1), (B-11)

where ν(k+ 1) ≡ z(k+ 1)− ẑ(k+ 1 | k) is the measurement residual or innovation. The quantity S
can be viewed as the innovation covariance. The updated covariance is obtained by using Eq. (B-5)
and making the necessary substitutions:

P (k + 1 | k + 1) = P (k + 1 | k)−W (k + 1)S(k + 1)W (k + 1)T . (B-12)

Figure B-1 is a high-level overview representing one cycle of the Kalman filter that summarizes
the relevent equations presented above. Note that the covariance is independent of the state and
measurements and can be calculated offline, as Eq. (B-12) implies.
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Figure B-1. Recursive estimation process using the Kalman filter.
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B.2 UNSCENTED KALMAN FILTER

The unscented Kalman filter is an extension to the Kalman filter that uses the unscented transform
to allow for nonlinear dynamic systems and measurement models [53]. The unscented transform
approximates the distribution of a random variable y that results from an arbitrary nonlinear
transformation y = f(x), where the mean x̄ and covariance Px of x ∈ Rnx are known. It does this
by deterministically choosing sample points, also referred to as sigma points, defined by

χi = x̄ Wi = κ
nx+κ i = 0,

χi = x̄+
(√

(nx + κ)Px
)
i

Wi = 1
2(nx+κ) i = 1, . . . , nx,

χi = x̄−
(√

(nx + κ)Px
)
i−nx

Wi = 1
2(nx+κ) i = nx + 1, . . . , 2nx,

(B-13)

where κ is a scaling parameter and
(√

(nx + κ)Px
)
i
is the ith row of the matrix square root of

(nx + κ)Px. These sigma points capture the true mean and covariance of x. The first sigma point
is called the central sigma point. They are then propagated through the function f to obtain the
points βi = f(χi), i = 0, . . . , 2nx. The first two moments of y are recovered as

ȳ =
2nx∑
i=0

Wiβi, (B-14)

Py =
2nx∑
i=0

Wi(βi − ȳ)(βi − ȳ)T . (B-15)

Figure B-2 illustrates how the unscented transform works for a two-dimensional problem. The
original distribution is captured by five sigma points, which are then propagated through the
nonlinear function, after which the mean and covariance of the new distribution are calculated
empirically using Eq. (B-14) and Eq. (B-15).

In the unscented Kalman filter, both the system dynamics function

x(k + 1) = f(x(k), u(k), v(k)) (B-16)

and the measurement function
z(k + 1) = h(x(k), w(k)) (B-17)

can be nonlinear functions. Because the dynamics are nonlinear, the predicted state mean and
covariance can no longer be computed using Eq. (B-6) and Eq. (B-7). Instead, 2N +1 sigma points
from the joint distribution of the state x(k) and the noise v(k) are drawn. Let the state portion of
the sigma points be denoted χ and the noise portion of the sigma points ξ. Propagating the sigma
points through f to obtain {βi = f(χi, u(k), ξi)}, the predicted state and covariance become

x̂(k + 1 | k) =
2N∑
i=0

Wiβi, (B-18)

P (k + 1 | k) =
2N∑
i=0

Wi (βi − x̂(k + 1 | k)) (βi − x̂(k + 1 | k))T . (B-19)
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Figure B-2. The unscented transform. Sigma points are shown in gray. The central sigma point has a thicker
outline.

Similarly, by sigma-point sampling from the joint distribution of x(k) and w(k) and propagating
through the measurement function to obtain the set {yi}, the predicted measurement and covariance
are

ẑ(k + 1 | k) =
2N∑
i=0

Wiyi, (B-20)

S(k + 1) =
2N∑
i=0

Wi (yi − ẑ(k + 1 | k)) (yi − ẑ(k + 1 | k))T . (B-21)

The cross-covariance needed to arrive at the filter gain and, hence, the updated state estimate and
covariance is calculated in a similar way.

There are other ways of extending the Kalman filter to accomodate nonlinear transformations.
The unscented Kalman filter provides one way in which probability distributions resulting from
nonlinear transformations are approximated. The extended Kalman filter provides another way
by not approximating the resulting probability distributions but the nonlinear transformations
themselves through some kind of local approximation. This requires computing derivatives. The
accuracy of the approximation is dictated by the highest order of the derivatives computed. In
many applications, the unscented Kalman filter is preferable because it does not require these
computations and often produces more accurate results.

B.3 HORIZONTAL TRACKER

The relative horizontal motion between the own aircraft and the intruder is estimated using an un-
scented Kalman filter. The tracker receives raw measurements of the form zraw = [rslant χ h0 h1 ψ0],
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where rslant is the slant range to the intruder, χ is the relative bearing of the intruder, h0 is the
own aircraft altitude, h1 is the intruder altitude, and ψ0 is the own aircraft heading. All of these
measurements, with the exception of the heading, are available to TCAS currently. The heading
should be attainable through the onboard avionics. These raw measurements are converted to
position measurements in a relative Cartesian coordinate system, z = [xrel yrel hrel], according to
the follow equations: 

xrel =
√
r2
slant − (h1 − h0)2 sin(θ),

yrel =
√
r2
slant − (h1 − h0)2 cos(θ),

hrel = h1 − h0,

(B-22)

where θ ≡ χ + ψ. The state is the position and velocities in the relative Cartesian coordinate
system: x = [xrel yrel hrel ẋrel ẏrel ḣrel]. The measurement function is given by the following
nonlinear function:

z = h(x,w) = h2(h1(x) + w), (B-23)
where the transformation h1 is given by

[rslant θ hrel] = h1([xrel yrel hrel ẋrel ẏrel ḣrel]) =


√
x2
rel + y2

rel + h2
rel

atan2(xrel, yrel)
hrel

 (B-24)

and the transformation h2 by

[xrel yrel hrel] = h2([rslant θ hrel]) =


√
r2
slant − h2

rel sin(θ)√
r2
slant − h2

rel cos(θ)
hrel

 . (B-25)

The vector w is the zero-mean white Gaussian measurement noise vector with covariance

R =

 σ2
rslant 0 0
0 σ2

θ 0
0 0 σ2

hrel

 . (B-26)

The variance σ2
θ is equal to σ2

χ + σ2
ψ, assuming the relative bearing and own aircraft heading are

independent. Similarly, σ2
hrel

= σ2
h0

+ σ2
h1
. The variance in the intruder altitude measurement, σ2

h1
,

is σ2
hjitter

+q2/12, where σ2
hjitter

is the contribution due to random noise and q2/12 is the contribution
due to quantization error, q being the amount of quantization (e.g., 25 ft or 100 ft).

The state-transition function is the following linear function:

x(k + 1) = Fx(k) +Bv(k)

=



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


x(k) +



1
2(∆t)2 0 0

0 1
2(∆t)2 0

0 0 1
2(∆t)2

∆t 0 0
0 ∆t 0
0 0 ∆t


v(k),

(B-27)
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TABLE B-1

Parameters for the horizontal unscented Kalman filter

Parameter Description Typical values

σrslant std dev in the slant range 50 ft
σθ std dev in the relative bearing and own aircraft heading 10 deg
σhjitter std dev in intruder altitude due to random noise 0
q quantization in intruder altitude 25 ft
σh0 std dev in own altitude 0
σẍ std dev in the x position process 8 ft/s2 (white noise) / 30 ft/s2 (correlated)
σÿ std dev in the y position process 8 ft/s2 (white noise) / 30 ft/s2 (correlated)
σḧ std dev in the h position process 3 ft/s2

σv0 initial velocity std dev scale factor 250 ft/s

where v(k) is the zero-mean white Gaussian process noise vector with covariance

Q =

 σ2
ẍrel

0 0
0 σ2

ÿrel
0

0 0 σ2
ḧrel

 , (B-28)

where ẍrel, ÿrel, and ḧrel represent the accelerations in the relative x, y, and h dimensions, respec-
tively. The variances of ẍrel, ÿrel, and ḧrel are twice those of the individual aircraft, ẍ, ÿ, and ḧ,
respectively.

The filter is initialized using the first measurement. The mean of the velocity components
of the state is initialized to zero with an arbitrary covariance of the form σ2

v0I3×3. The various
parameters used in the horizontal tracker are listed in Table B-1. It also lists some typical values
used when tracking white-noise and correlated model encounters.

The posterior state distribution at time k, N (x(k); x̂(k | k), P (k | k)), is a continuous dis-
tribution. Because the logic accepts discrete distributions, the posterior state distribution must
be sampled to produce a collection of samples with associated probabilities. Thirteen sigma-point
samples were drawn from the posterior, and each sample was converted into the uncontrolled state
representation of Section 5.3 as follows:

r =
√
x2
rel + y2

rel,

rv =
√
ẋ2
rel + ẏ2

rel,

θv = atan2(ẏrel, ẋrel)− atan2(yrel, xrel).

(B-29)

Figure B-3 shows the root-mean-square error in r, rv, and θv over the course of 50 seconds,
averaged over 100,000 encounters from both the white-noise encounter model and the correlated en-
counter model. The white-noise encounters were produced using an 8 ft/s2 horizontal acceleration,
3 ft/s2 vertical acceleration. The own aircraft was equipped with the TCAS-like sensor of Sec-
tion 7.1. The performance of the unscented Kalman filter is compared to a simple finite-difference
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Figure B-3. Horizontal tracking performance.

approach. The finite-difference approach produces better estimates of the horizontal range because
it can be uniquely determined from the slant range, intruder altitude, and own altitude measure-
ments, which are not very noisy. However, when making use of the intruder bearing measurement,
which can be very inaccurate, the intruder can be mislocated, leading to large range errors. Given
sufficient time, however, the horizontal range error becomes small.

B.4 VERTICAL TRACKER

The altitude and vertical rate of the intruder are estimated using a regular Kalman filter. The
tracker receives quantized measurements of the intruder altitude, z = h1, from which it estimates
the altitude and vertical rate, x = [h1 ḣ1]. The measurement function is

z = Hx+ w = [1 0]x+ w. (B-30)
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TABLE B-2

Parameters for the vertical Kalman filter

Parameter Description Typical values

σhjitter std dev in intruder altitude due to random noise 0
q quantization in intruder altitude 25 ft
σḧ1

std dev in intruder altitude process 3 ft/s2

σḣ1
std dev in initial vertical rate 100 ft/s
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(b) ḣ1 RMS error.

Figure B-4. Vertical tracking performance.

The variance of w is σ2
w = σ2

hjitter
+q2/12, as in the horizontal tracker. The state-transition function,

similar to Eq. (B-27), is given by

x(k + 1) = Fx(k) +Gv(k)

=
[

1 ∆t
0 1

]
x(k) +

[
1
2(∆t)2

∆t

]
v(k),

(B-31)

where σ2
v(k) = σ2

ḧ1
.

The filter is initialized using the first measurement. The mean of the vertical rate is initialized
to zero with an arbitrary variance σ2

ḣ1
. The various parameters used in the vertical tracker are listed

in Table B-2. It also lists some typical values.

Figure B-4 shows the root-mean-square error in h1 and ḣ1 over the course of 50 seconds,
averaged over 100,000 encounters from both the white-noise encounter model and the correlated
encounter model. Both aircraft in the encounters were not equipped with collision avoidance
systems; therefore their vertical motion did not change in response to resolution advisories. The
performance of finite-difference tracking is showed as a baseline.
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B.5 DISCUSSION

This appendix presented details of the horizontal and vertical trackers used in Section 7. Although
the horizontal and vertical estimation was decoupled, in reality there may be correlation between
the horizontal and vertical variables that can only be captured by performing estimation of the
entire state given all the measurements. This is unlikely to have a significant impact on the results.
The trackers can be enhanced in various ways. For example, the vertical tracker can explicitly model
the altitude quantization, instead of simply increasing the measurement noise [54]. Additionally,
the distribution of the joint advisory state variable sRA can serve as an indication of the “mode”
of flight of the intruder. Using this extra information can result in improved estimation of the
intruder altitude and vertical rate when the intruder is equipped with a collision avoidance system.
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