Publications

Refine Results

(Filters Applied) Clear All

GLONASS performance in 1992: a review

Published in:
GPS World, Vol. 4, No. 5, May 1993, pp. 28-39.

Summary

Researchers at MIT's Lincoln Laboratory reviewed GLONASS developments during 1992, focusing on the requirements of civil aviation and the issues related to position estimation. The results show that the overall performance remains substantially the same as observed in 1991.
READ LESS

Summary

Researchers at MIT's Lincoln Laboratory reviewed GLONASS developments during 1992, focusing on the requirements of civil aviation and the issues related to position estimation. The results show that the overall performance remains substantially the same as observed in 1991.

READ MORE

Receiver Autonomous Integrity Monitoring (RAIM) of GPS and GLONASS

Published in:
Navig. J. Inst. Navig., Vol. 40, No. 1, Spring 1993, pp. 87-104.

Summary

A receiver autonomous integrity monitoring (RAIM) algorithm is proposed, and used to analyze the integrity monitoring capabilities of potential sole-means (or stand-alone) systems based on integrated use of GPS and GLONASS, GPS supplemented with a geostationary overlay, and enhanced GPS constellations. As in the other RAIM algorithms, the idea is to take advantage of the redundant measurements. Our focus, however, is on the quality of the position estimate, rather than on diagnosing whether the system is working as intended. The proposed approach uses the redundant measurements to generate a position estimate and a measure of its quality. The latter, called integrity level, is defined as an upper bound on the position error. The estimation of the integrity level is the main innovation in the proposed scheme. The RAIM algorithm is tailored to an abundant redundancy of the measurements, and addresses the following issue: Given a snapshot of the pseudo range measurements, one of which may be in error, can we compute a position estimate that can be shown with high confidence to meet the user's accuracy requirement?
READ LESS

Summary

A receiver autonomous integrity monitoring (RAIM) algorithm is proposed, and used to analyze the integrity monitoring capabilities of potential sole-means (or stand-alone) systems based on integrated use of GPS and GLONASS, GPS supplemented with a geostationary overlay, and enhanced GPS constellations. As in the other RAIM algorithms, the idea is...

READ MORE

Integrated use of GPS and GLONASS in civil aviation navigation I: coverage and data models

Published in:
Institute of Navigation, 3rd Int. Technical Mtg. of the Satellite Division, 19-21 September 1990, pp. 425-435.

Summary

Pursuant to a bilateral agreement signed in 1988, both US and USSR are currently in the process of examining integrated use of GPS and GLONASS for sole-means civil aviation navigation. This paper presents results from the initial phase of a program underway at MIT Lincoln Laboratory to support this effort. Specifically, we present results on satellite coverage and quality of the range measurements from GPS and GLONASS. The coverage results highlight the extent to which each system alone falls short of providing a self-contained system integrity check. In integrated use, however, there are enough redundant measurements to make receiver autonomous integrity monitoring (RAIM) practical. The data quality results are based on statistical analysis of the range measurements from GPS, at various levels of selective availability (SA), collected over extended periods. We present empirical cumulative distribution function of the range error, and RMS value of its component, defined as the 'effective' range error, relevant to position estimation. These results are used to project the position estimation. These results are used to project the position estimation accuracy achievable globally with GPS, when operational. Comparable results for GLONASS are being developed. The coverage and data quality results together provide a basis for development of the navigation and RAIM algorithms for the integrated use. This will be addressed in the next phase of the program. The important considerations in the design of these algorithms, including the differences in the reference systems for space and time employed by the two systems, are briefly reviewed.
READ LESS

Summary

Pursuant to a bilateral agreement signed in 1988, both US and USSR are currently in the process of examining integrated use of GPS and GLONASS for sole-means civil aviation navigation. This paper presents results from the initial phase of a program underway at MIT Lincoln Laboratory to support this effort...

READ MORE

Parallel runway monitor

Published in:
Lincoln Laboratory Journal, Vol. 2, No. 3, Fall 1989, pp. 411-436.

Summary

The availability of simultaneous independent approaches to parallel runways significantly enhances airport capacity. Current FAA procedures permit independent approaches in instrument meteorological conditions (IMC) when the parallel runways are spaced at least 4,300 ft apart. Arriving aircraft must be dependently sequenced at airports that have parallel runways separated by less than 4,300 ft, a procedure that reduces the arrival rate by as much as 250h. The need for greater airport capacity has led to intense interest in new technologies that can support independent parallel IMC approaches to runways spaced as close as 3,000 ft. This interest resulted in several FAA initiatives, including a Lincoln Laboratory program to evaluate the applicability of Mode-S secondary surveillance radars for monitoring parallel runway approaches. This paper describes the development and field activities of this program.
READ LESS

Summary

The availability of simultaneous independent approaches to parallel runways significantly enhances airport capacity. Current FAA procedures permit independent approaches in instrument meteorological conditions (IMC) when the parallel runways are spaced at least 4,300 ft apart. Arriving aircraft must be dependently sequenced at airports that have parallel runways separated by less...

READ MORE

TCAS Experimental Unit (TEU) hardware description

Published in:
MIT Lincoln Laboratory Report ATC-133

Summary

This report describes the hardware design of the TCAS Experimental Units (TEU's) constructed by Lincoln Laboratory to support the design and validation of the Traffic Alert and Collision Avoidance System (TCAS) for the FAA. Section 1.0 presents an overview of the operation of hte TEU's, in order to give some context for the hardware design. References are given to more extensive descriptions of the TCAS system operation and software design. Section 2.0 constitutes the bulk of the report, and is a detailed description of the TEU hardware design. The purpose of this description is to document the design details of the equipment which was used to develop and validate the signal processing techniques and algorithms which appear in the TCAS II Minimum Operational Performance Standard, the TCAS National Standard and various technical reports listed in the references. A second purpose is to provide design guidance to potential TCAS II manufacturers, in the form of a detailed description of a feasible design with documented performance. Finally, this document is a manual for future use and maintenance of the TEU's.
READ LESS

Summary

This report describes the hardware design of the TCAS Experimental Units (TEU's) constructed by Lincoln Laboratory to support the design and validation of the Traffic Alert and Collision Avoidance System (TCAS) for the FAA. Section 1.0 presents an overview of the operation of hte TEU's, in order to give some...

READ MORE

Collision avoidance for Naval training aircraft

Published in:
MIT Lincoln Laboratory Report ATC-125

Summary

Lincoln Laboratory was tasked by the FAA to assist the Naval Air Training Command in evaluating the feasibility of using the FAA's TCAS I concept as the document summarizes the results of a brief study and flight test activity conducted to that end. It begins with a review of Lincoln Laboratory's understanding of the nature of the mid-air collision problem at the Naval Air Training Center. This is followed by a brief analysis of a set of documented collisions and near-miss encounters involving aircraft of Navy Training Air Wing 5 at Whiting Naval Air Station in Florida in 1982 and 1983. Experience gained from FAA and Lincoln Laboratory flight tests of similar encounters is reviewed and applied to the Navy encounter data base. This is followed by a review of the results obtained when a Lincoln Laboratory aircraft equipped with a TCAS Experimental Unit (TEU) was flown to Whiting Field to evaluate the ability of TCAS I equipment to perform reliable surveillance in the Naval training environment. Flight test results show that the environment is quite unlike typical civil environments, but that the TCAS surveillance design would be capable of providing a significant degree of protection to Naval trainers.
READ LESS

Summary

Lincoln Laboratory was tasked by the FAA to assist the Naval Air Training Command in evaluating the feasibility of using the FAA's TCAS I concept as the document summarizes the results of a brief study and flight test activity conducted to that end. It begins with a review of Lincoln...

READ MORE

An experimental GPS navigation receiver for general aviation: design and measured performance

Published in:
MIT Lincoln Laboratory Report ATC-121

Summary

This report describes work performed by MIT Lincoln Laboratory between 1 October 1979 and 1 March 1983, to evaluate the use of the Global Positioning System (GPS) for low-cost civil air navigation. The report describes a GPS Test and Evaluation System developed jointly by MIT Lincoln Laboratory, Stanford Telecommunications, Inc., and Intermetrics, Inc., using techniques that could lead to low-cost commercial avionics. System performance results obtained in the laboratory and during flight tests are provided which demonstrate compliance with current and future navigation accuracy requirements for enroute, terminal, and non-precision flight paths. The report also includes functional specifications for a low-cost GPS navigation system for civil aircraft. The GPS Test and Evaluation system design was based on two important features: 1) automatic tracking of all visible satellites (rather than a minimum set of four) and 2) a dual-channel GPS C/A code receiver. Tracking all visible satellites allows the system to maintain continuous navigation when a satellite sets or is momentarily masked during aircraft maneuvers. The dual-channel receiver dedicates one channel to pseudo-range measurements, and the other channel to acquiring new satellites as they become visible. These two features, validated by flight test, allow the system to provide continuous navigation updates during critical aircraft maneuvers, such as non-precision approaches, and during satellite constellation changes.
READ LESS

Summary

This report describes work performed by MIT Lincoln Laboratory between 1 October 1979 and 1 March 1983, to evaluate the use of the Global Positioning System (GPS) for low-cost civil air navigation. The report describes a GPS Test and Evaluation System developed jointly by MIT Lincoln Laboratory, Stanford Telecommunications, Inc...

READ MORE

Active BCAS: design and validation of the surveillance subsystem

Published in:
MIT Lincoln Laboratory Report ATC-103

Summary

Lincoln Laboratory, under FAA sponsorship, is developing an Active Beacon Collision Avoidance System (BCAS), concentrating primarily on the air-to-air surveillance subsystem. The surveillance functions required are to detect the presence of nearby aircraft (whether they are equipped with ATCRBS transponders or DABS transponders), and then generate a surveillance track on each aircraft, issuing range and altitude reports once per second. The development effort consisted of airborne measurements complemented by simulation studies and analyses. The basic effects of ground-bounce multipath, interference, and power fading were assessed by air-to-air measurements. In other measurements, the BCAS interrogation and reply signal formats were transmitted between aircraft, and the results recorded for later playback and computer processing using the BCAS surveillance algorithms. This is a flexible means of experimentation which allows many of the design parameters to be changed as the effects are noted. In the most recent phase of the program, Lincoln designed and built realtime BCAS Experimental Units (BE Us), flight tested them, and then delivered them to the FAA for more extensive flight testing. In one of these flight tests, a BEU-equipped Boeing 727 flew to New York, Atlanta, and other major terminal areas in the eastern U.S. An analysis of BEU performance during this "Eastern Tour" is given in this report.
READ LESS

Summary

Lincoln Laboratory, under FAA sponsorship, is developing an Active Beacon Collision Avoidance System (BCAS), concentrating primarily on the air-to-air surveillance subsystem. The surveillance functions required are to detect the presence of nearby aircraft (whether they are equipped with ATCRBS transponders or DABS transponders), and then generate a surveillance track on...

READ MORE

The Transportable Measurements Facility (TMF) system description

Published in:
MIT Lincoln Laboratory Report ATC-91

Summary

This report describes the MIT Lincoln Laboratory Transportable Measurements Facility (TMF), a special purpose beacon interrogator patterned after the Discrete Address Beacon Sensor. This van-mounted experimental beacon system includes all ATCRBS/DABS reply processing and monopulse processing, but not other DABS processing. It was developed to collect data at various locations in the United States so that candidate DABS sensor antenna and processing could be evaluated in a real environment. The TMF has been installed and operated at: Logan Airport (Boston), Deer Island, MA (near Logan), Washington National Airport (DCA), Philadelphia Int. Airport (PHL), Clementon, NJ (near Philadelphia), Los Angeles Int. Airport (LAX), Brea, CA (25 miles east of LAX), Salt Lake City, UT (SLC), Layton, UT (near Salt Lake City), Las Vegas Airport (LAS), and Green Airport (Warwick, RI).
READ LESS

Summary

This report describes the MIT Lincoln Laboratory Transportable Measurements Facility (TMF), a special purpose beacon interrogator patterned after the Discrete Address Beacon Sensor. This van-mounted experimental beacon system includes all ATCRBS/DABS reply processing and monopulse processing, but not other DABS processing. It was developed to collect data at various locations...

READ MORE

PALM - a system for precise aircraft location

Published in:
J. of the Institute of Navigation, Vol. 23, No. 3, Fall 1976, pp. 257-261.

Summary

The Precision Altitude and Landing Monitor (PALM) is intended to provide accurate stand-alone three-dimensional position data for aircraft equipped with standard beacon transponders using ground equipment designed for low life cycle cost. The PALM program, to the present time, has focused on an experimental evaluation of the accuracy of elevation measurements. The results of these measurements have successfully validated the theoretical prediction of a 1-mrad (0.06 degree) elevation accuracy at low elevation angles. The key features in the PALM design include (1) No new avionics required, i.e., it uses standard aircraft transponder. IFPALM is used as the data base for certain ground-to-air messages, a standard VHF or DABS data link could be employed. (2) High accuracy position data, i.e., a 1-mrad rms error in elevation and in azimuth at low elevation angles. (3) Broad airspace coverage, e.g., 40 degrees in elevation, 120 degrees in azimuth (expandable to 360 degrees), and several tens of miles in range. (4) Low life cycle equipment cost, i.e., it incorporates a fixed passive receiving antenna array and a minicomputer to perform the signal processing necessary for interference rejection.
READ LESS

Summary

The Precision Altitude and Landing Monitor (PALM) is intended to provide accurate stand-alone three-dimensional position data for aircraft equipped with standard beacon transponders using ground equipment designed for low life cycle cost. The PALM program, to the present time, has focused on an experimental evaluation of the accuracy of elevation...

READ MORE

Showing Results

1-10 of 11