Publications
Redeployment of the New York TDWR - technical analysis of candidate sites and alternative wind shear sensors
Summary
Summary
The John F. Kennedy International Airport (JFK) and LaGuardia Airport (LGA) are protected from wind shear exposure by the New York Terminal Doppler Weather Radar (TDWR), which is currently located at Floyd Bennet Field, New York. Because of a September 1999 agreement between the Department of the Interior and the...
Modeling convective weather avoidance in enroute airspace
Summary
Summary
It is generally agreed that effective management of convective weather in congested airspace requires decision support tools that translate the weather products and forecasts into forecasts of ATC impacts and then use those ATC impact forecasts to suggest air traffic management strategies. In future trajectory-based operations, it will be necessary...
Aircraft encounters with thunderstorms in enroute vs. terminal airspace above Memphis, Tennesssee
Summary
Summary
To date, very little attention has been given to quantifying the effects of thunderstorms on air traffic in enroute airspace. What types of storms cause pilots to deviate from their nominal flight routes? What types of storms do pilots fly through? Around? Over? When thunderstorms are forecast to affect a...
New products for the NEXRAD ORPG to support FAA critical systems
Summary
Summary
A number of Federal Aviation Administration (FAA) critical systems rely on products from the NEXRAD (WSR-88D) suite of algorithms. These systems include MIAWS (Medium Intensity Airport Weather System), ITWS (Integrated Terminal Weather System), CIWS (Corridor Integrated Weather System), and WARP (Weather and Radar Processing). With the advent of the NEXRAD...
Commercial aircraft encounters with thunderstorms in the Memphis terminal airspace
Summary
Summary
Thunderstorms are dynamic obstacles to the flow of air traffic. Aircraft routing in the presence of thunderstorms is as dynamic as the position and intensity of the storms. The question of where pilots will and will not fly is relevant to the decisions made by human air traffic managers as...
The design and validation of the ITWS synthetic sensor data generator
Summary
Summary
The Integrated Terminal Weather System (ITWS) is an aviation safety and air traffic management decision support system that acquires data from various FAA and NWS sensors and generates a number of products for dissemination to FAA facilities managing air traffic in the terminal area. The development and demonstrations of ITWS...
The thunderstorm penetration/deviation decision in the terminal area
Summary
Summary
During thunderstorm periods, terminal air traffic planners make a number of key decisions. They decide when to close and re-open arrival fixes, departure fixes, and runways; they anticipate and execute changes in runway configuration; they negotiate routing and flow rate decisions with Air Route Traffic Control Center (ART CC) traffic...
The impact of thunderstorm growth and decay on air traffic management in class B airspace
Summary
Summary
Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth...
ITWS microburst prediction algorithm performance, capabilities, and limitations
Summary
Summary
Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at...
Comparison of the performance of the Integrated Terminal Weather System (ITWS) and Terminal Doppler Weather Radar (TDWR) microburst detection algorithms
Summary
Summary
This paper describes the designs of the TDWR and ITWS Microburst Detection algorithms, and compares their performances in the Orlando, FL and Memphis, TN environments. This is the first study in which the performance of the TDWR and ITWS microburst detection algorithms are compared using an identical data set and...