Publications

Refine Results

(Filters Applied) Clear All

Analysis of ground-based radar low-altitude wind-shear detection in OEP terminal airspace for NextGen

Author:
Published in:
MIT Lincoln Laboratory Report ATC-375

Summary

To support the Next Generation Air Transportation System (NextGen), the Reduce Weather Impact Sensor RightSizing program is identifying and analyzing gaps in the current sensor network coverage relative to the Four-Dimensional Weather Data Cube Single Authoritative Source performance requirements. In this study, we look for shortfalls in low-altitude wind-shear sensing by ground-based radars and lidar in the NextGen super-density operations (SDO) terminal airspace. Specifically, 2D gridded wind-shear visibility (an upper bound to detection probability) data are generated for microbursts and gust fronts separately for different sensors, namely the Terminal Doppler Weather Radar, Next Generation Weather Radar, Airport Surveillance Radar-9 with Weather Systems Processor, and Doppler lidar.
READ LESS

Summary

To support the Next Generation Air Transportation System (NextGen), the Reduce Weather Impact Sensor RightSizing program is identifying and analyzing gaps in the current sensor network coverage relative to the Four-Dimensional Weather Data Cube Single Authoritative Source performance requirements. In this study, we look for shortfalls in low-altitude wind-shear sensing...

READ MORE

Redeployment of the New York TDWR - technical analysis of candidate sites and alternative wind shear sensors

Summary

The John F. Kennedy International Airport (JFK) and LaGuardia Airport (LGA) are protected from wind shear exposure by the New York Terminal Doppler Weather Radar (TDWR), which is currently located at Floyd Bennet Field, New York. Because of a September 1999 agreement between the Department of the Interior and the Department of Transportation, this location is required to be vacated no later than January 2023. Therefore, a study based on model simulations of wind shear detection probability was conducted to support future siting selection and alternative technologies. A total of 18 candidate sites were selected for analysis, including leaving the radar where it is. (The FAA will explore the feasibility of the latter alternative; it is included in this study only for technical analysis.) The 18 sites are: Six candidate sites that were identified in the initial New York TDWR site-survey studies in the 1990s (one of which is the current TDWR site), a site on Staten Island, two Manhattan skyscrapers, the current location of the WCBS Doppler weather radar in Twombly Landing, New Jersey, and eight local airports including JFK and LGA themselves. Results clearly show that for a single TDWR system, all six previously surveyed sites are suitable for future housing of the TDWR. Unfortunately, land acquisition of these sites will be at least as challenging as it was in the 1990s due to further urban development and likely negative reaction from neighboring residents. Evaluation results of the on-airport siting of the TDWR (either at JFK or at LGA) indicate that this option is feasible if data from the Newark TDWR are simultaneously used. This on-airport option would require software modification such as integration of data from the two radar systems an dimplementation of "overhead" feature detection. The radars on the Manhattan skyscrapers are not an acceptable alternative due to severe ground clutter. The Staten Island site and most other candidate airports are also not acceptable due to distance and/or beam blockage. The existing Airport Surveillance Radar (ASR-9) Weather Systems Processor (WSP) at JFK and the Bookhaven (OKX) Weather Surveillance Radar 1988-Doppler (WSR-88D, commonly known as NEXRAD) on Long Island cannot provide sufficient wind shear protection mainly due to limited wind shear detection capability and/or distance.
READ LESS

Summary

The John F. Kennedy International Airport (JFK) and LaGuardia Airport (LGA) are protected from wind shear exposure by the New York Terminal Doppler Weather Radar (TDWR), which is currently located at Floyd Bennet Field, New York. Because of a September 1999 agreement between the Department of the Interior and the...

READ MORE

Wind-shear system cost benefit analysis update

Published in:
MIT Lincoln Laboratory Report ATC-341

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind shear detection equipment are all key protection components. While these systems have been highly effective, there are substantial costs associated with maintaining and operating ground-based systems. In addition, while over 85% of all major air carrier operations occur at airports protected by one of these ground-based wind-shear systems, the vast majority of smaller operations remain largely unprotected. This report assesses the technical and operational benefits of current and potential alternative ground-based systems as mitigations for the low-altitude wind-shear hazard. System performance and benefits for all of the current TDWR (46), ASR-9 WSP (35), and LLWAS (40) protected airports are examined, along with 40 currently unprotected airports. We considered in detail several alternatives and/or combinations for existing ground-based systems. These included the option to use data from current WSR-88D (or NEXRAD) and two potential future sensor deployments: (1) a commercially built pulsed-Doppler Lidar and (2) an X-band commercial Doppler weather radar. Wind-shear exposure estimates and simulation models for each wind shear protection component were developed for each site in order to accurately comare all alternatives. For the period 2010-2032, the current combination of wind-shear protection systems reduces teh $3.0 billion unprotected NAS overall wind-shear safety exposure to just $160 million over the entire study period. Overall, tehre were few alternatives that resulted in higher benefits than the TDWR, TDWR-LLWAS, and WSP configurations that currently exist at 81 airports. However, the cheaper operating costs of NEXRAD make it a potential alternative especially at LLWAS and non-wind-shear protected sites.
READ LESS

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind...

READ MORE

Comparison of Rapid Update Cycle (RUC) model crosswinds with LIDAR crosswind measurements at St. Louis Lambert International Airport

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft pose a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). To take wake vortex behavior into account, current aircraft departing/landing standards require a safe distance behind the wake generating aircraft at which operations can be conducted. The Federal Aviation Administration (FAA) and National Aeronautics and Space Administration (NASA) have initiated an improved wake avoidance solution, referred to as Wake Turbulence Mitigation for Departures (WTMD). The process is designed to safely increase runway capacity via actively monitoring wind conditions that impact wake behavior (Hallock, et al., 1998; Lang et al., 2005). An important component of WTMD is a Wind Forecast Algorithm (WFA) being developed by MIT Lincoln Laboratory (Cole & Winkler, 2004). The WFA predicts runway crosswinds from the surface up to a height of approximately ~300 m (1000 ft) once per minute and thus forecasts when winds favorable for WTMD will persist long enough for safe procedures for a particular runway (Lang et al., 2007). The algorithm uses 1–4 hr wind forecasts from the Rapid Update Cycle (RUC) model operated by the National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP) for upper atmospheric wind profiles. Detailed description of the RUC model can be found elsewhere (Benjamin et al., 1994; 2004a; 2004b). Briefly, the RUC model inputs are assimilations of high frequency observations from a suite of meteorological sensors, including Automated Surface Observing System (ASOS), rawinsonde profiles, satellite, airborne sensors from commercial aircraft, etc. The vertical layers of the atmosphere are resolved approximately isentropically. The model is run hourly, producing hourly forecasts out to 24 hours. The coverage of the RUC grid includes the continental United States, southern Canada, northern Mexico, and adjacent coastal waters. Here we evaluate the performance of RUC in predicting crosswinds with reliability sufficient to support WTMD. For RUC validation, in situ wind profile data were obtained from a Light Imaging Detection and Ranging (LIDAR) deployed at St. Louis Lambert International Airport (STL). The focus of this study is to provide a general quantitative characterization of the difference between RUC predictions and LIDAR measurements of the runway crosswinds. Particular attention was given to cases with inaccurate RUC crosswind forecasts, and cases when significant horizontal and vertical shears occur during situations of convective weather or proximity to large scale weather features, e.g., air mass fronts. (In practice, WTMD procedures and existing weather sources in the Control Tower will manage, to an acceptable level of risk, the hazard exposure associated with the extreme wind shift examples presented here.) Also included was examination of performance degradation with longer RUC forecast horizons and coarser horizontal resolutions, which may be relevant with regard to actual operational forecast data availability, or future applications of the operational concept to include arrival operations. A detailed report for this study is also available (Huang et al., 2007).
READ LESS

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft pose a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). To take wake vortex behavior into account, current aircraft departing/landing standards require a...

READ MORE

Showing Results

1-4 of 4