Publications

Refine Results

(Filters Applied) Clear All

ASR-9 Weather Systems Processor technology refresh and upgrade

Summary

The Weather Systems Processor (WSP) is an add-on system to the Airport Surveillance Radar-9 (ASR-9) that generates wind shear detection and storm tracking products for the terminal airspace. As the original system ages and pre-purchased replacement parts in the depot are used up, it becomes increasingly problematic to procure hardware components for repairs. Thus, a technical refresh is needed to sustain WSP operations into the future. This phase of the project targets the intermediate frequency digital receiver, the radar interface module, and the digital signal processor for replacement by updated hardware platforms. At the same time, the increase in computational capability allows for an upgrade in the signal processing algorithm, which will lead to data quality improvements.
READ LESS

Summary

The Weather Systems Processor (WSP) is an add-on system to the Airport Surveillance Radar-9 (ASR-9) that generates wind shear detection and storm tracking products for the terminal airspace. As the original system ages and pre-purchased replacement parts in the depot are used up, it becomes increasingly problematic to procure hardware...

READ MORE

Applications of a macroscopic model for en route sector capacity

Published in:
AIAA Guidance, Navigation and Control Conf. and Exhibit, 18-21 August 2008.

Summary

Airspace capacity estimates are important both for airspace design and for operational air traffic management. Considerable effort has gone into understanding the complexity factors that reduce sector capacity by increasing controller workload. Yet no analytical means is available for accurately estimating the maximum capacity of an en route sector. The Monitor Alert Parameter (MAP) values that determine the operational traffic limit of en route sectors in the United States account only for workload from inter-sector coordination tasks. We propose a more complete sector capacity model that also accounts for workload from conflict avoidance and recurring tasks. We use mean closing speeds and airspace separation standards to estimate aircraft conflict rates. We estimate the mean controller service times for all three task types by fitting the model against observed peak traffic counts for hundreds of en route airspace volumes in the Northeastern United States. This macroscopic approach provides numerical capacity predictions that closely bound peak observed traffic densities for those airspace volumes. This paper reviews recent efforts to improve the accuracy of the bound by replacing certain global parameters with measured data from individual sectors. It also compares the model capacity with MAP values for sectors in the New York Center. It concludes by illustrating the use of the model to predict the capacity benefits of proposed technological and operational improvements to the air traffic management system.
READ LESS

Summary

Airspace capacity estimates are important both for airspace design and for operational air traffic management. Considerable effort has gone into understanding the complexity factors that reduce sector capacity by increasing controller workload. Yet no analytical means is available for accurately estimating the maximum capacity of an en route sector. The...

READ MORE

Validation techniques for ADS-B surveillance data

Published in:
21st DASC: Proc. of the Digital Avionics Systems Conf., Vol. 1, 27-31 October 2002, pp. 3.E.2-1 - 3.E.2-9.

Summary

Surveillance information forms the basis for providing traffic separation services by Air Traffic Control. The consequences of failures in the integrity and availability of surveillance data have been highlighted in near misses and more tragically, by midair collisions. Recognizing the importance and criticality of surveillance information, the U.S. Federal Aviation Administration (FAA) in common with most other Civil Aviation Authorities (CAAs) worldwide has implemented a surveillance architecture that emphasizes the independence of surveillance sources and the availability of crosschecks on all flight critical data. Automatic Dependent Surveillance Broadcast (ADS-B) changes this approach by combining the navigation and surveillance information into a single system element. ADS-B is a system within which individual aircraft distribute position estimates from onboard navigation equipment via a common communications channel. Any ADS-B receiver may then assemble a complete surveillance picture of nearby aircraft by listening to the common channel and combining the received surveillance reports with an onboard estimate of ownership position. This approach makes use of the increasing sophistication and affordability of navigation equipment (e.g. GPS-based avionics) to improve the accuracy and update rate of surveillance information. However, collapsing the surveillance and navigation systems into a common element increases the vulnerability of the system to erroneous information, both due to intentional and unintentional causes.
READ LESS

Summary

Surveillance information forms the basis for providing traffic separation services by Air Traffic Control. The consequences of failures in the integrity and availability of surveillance data have been highlighted in near misses and more tragically, by midair collisions. Recognizing the importance and criticality of surveillance information, the U.S. Federal Aviation...

READ MORE

ASR-8/TDX-2000 performance analysis: evaluation of multiple-time-around-detection (MTAD) algorithm and final report

Published in:
MIT Lincoln Laboratory Report ATC-300

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped or were never initiated. These problems were subsequently fixed via hard and soft parameter changes in the TDX-2000. A significant study was also undertaken in conjunction with the Sensis Corporation to improve the TDX-2000's capability to reject returns from multiple-time-around detections. The details of that algorithm modification and the results of follow-on testing and analysis are described. Final conclusions on the status of the project are also included.
READ LESS

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped...

READ MORE

A coordinate conversion algorithm for multisensor data processing

Author:
Published in:
MIT Lincoln Laboratory Report ATC-139

Summary

Processing of aircraft surveillance data from several geographically separated radars is most easily accomplished using a common coordinate system to represent data from all sensors. The Multisensor Data Processing system currently being developed for the FAA in support of the Advanced Automation System (AAS) requires a degree of accuracy and consistency that is not available from the current NAS implementation of coordinate conversion. A study has been undertaken to design a coordinate covnersion algorithm that meets the needs of Multisensor Data Processing. The process of projection of the ellipsoidal surface of the earth onto a planar surface is examined in light of teh requirements of air traffic control systems. The effects of the non-spherical nature of the earth and of limited computational resources are considered. Several standard cartographic projection techniques are examined, and the sterographic projection is found to be the projection of choice. A specific implementation of stereographic projection that makes the needs of Multisensor Data Processing is described. This implementation makes use of several approximations to decrease the computational load. The systemic errors introduced by these approximations are removed by the addition of a correction term determined from a precomputed error surface. The performance of this conversion system is demonstrated using realistic test data.
READ LESS

Summary

Processing of aircraft surveillance data from several geographically separated radars is most easily accomplished using a common coordinate system to represent data from all sensors. The Multisensor Data Processing system currently being developed for the FAA in support of the Advanced Automation System (AAS) requires a degree of accuracy and...

READ MORE

Showing Results

1-5 of 5