Publications

Refine Results

(Filters Applied) Clear All

Uncorrelated encounter model of the National Airspace System version 1.0

Published in:
MIT Lincoln Laboratory Report ATC-345

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are flying under Visual Flight Rules (VFR) and which may not be in contact with air traffic control. In response to the need to develop a model of these types of encounters, Lincoln Laboratory undertook an extensive radar data collection and modeling effort involving more than 120 sensors across the U.S. This report describes the structure and content of that encounter model. The model is based on the use of Bayesian networks to represent relationships between dynamic variables and to construct random aircraft trajectories that are statistically similar to those observed in the radar data. The result is a framework from which representative intruder trajectories can be generated and used in fast-time Monte Carlo simulations to provide accurate estimates of collision risk. The model described in this report is one of three developed by Lincoln Laboratory. An encounter with an intruder that does not have a transponder, or between two aircraft using a Mode A code of 1200 (VFR), is uncorrelated in the sense that it is unlikely that there would be prior intervention by air traffic control. The uncorrelated model described in this report is based on transponder-equipped aircraft using a 1200 (VFR) Mode A code observed by radars across the U.S. As determined from a comparison against primary-only tracks, in addition to representing VFR-on-VFR encounters, this model is representative of encounters between a cooperative aircraft and conventional noncooperative aircraft similar to those that use a 1200 transponder code. A second uncorrelated model is also being developed for unconventional aircraft that have different flight characteristics than 1200-code aircraft. Finally, a correlated encounter model has been developed to represent situations in which it is likely that there would be air traffic control intervention prior to a close encounter. The correlated model applies to intruders that are using a discrete (non-1200) code. Separate electronic files are available from Lincoln Laboratory that contain the statistical data required to generate and validate encounter trajectories. Details on how to interpret the data file and an example of how to randomly construct trajectories are provided in Appendices A and B, respectively. A Matlab software package is also available to generate random encounter trajectories based on the data tables. A byproduct of the encounter modeling effort was the development of National aircraft track and traffic density databases. Example plots of traffic density data are provided in this report, but the complete track and density databases are not provided in electronic form due to their size and the complexity of processing specific locations, altitudes, and times.
READ LESS

Summary

Airspace encounter models, covering close encounter situations that may occur after standard separation assurance has been lost, are a critical component in the safety assessment of aviation procedures and collision avoidance systems. Of particular relevance to Unmanned Aircraft Systems (UAS) is the potential for encountering general aviation aircraft that are...

READ MORE

Surveillance improvement algorithms for Airport Surface Detection Equipment Model X (ASDE-X) at Dallas-Fort Worth Airport

Published in:
MIT Lincoln Laboratory Report ATC-333

Summary

Operational testing of the Runway Status Lights (RWSL) system at the Dallas-Fort Worth (DFW) airport has detected a number of cases where faults in the ASDE-X/DFW surveillance data have led to erroneous operation of the status lights. Among the surveillance problems noted during testing at DFW were: (a) false tracks, (b) track positional jumps to false locations, (c) Mode S track splits, (d) ATCRBS track splits, (e) invalid Mode C altitudes, (f) invalid track velocities, and (g) spurious Mode 3/a 06078 code tracks. The RWSL surveillance improvement algorithms package in this document is placed between the ASDE-X/DFW surveillance data source and the RESL safety logic. The surveillance improvement algorithms perform a variety of reasonableness and consistency checks on the input data and set validity flags and report status values for each input report which are then passed on to the RWSL safety logic. These flags and status values allow the RWSL to ignore erroneous reports and to avoid using questionable report components in the subsequent RWSL logic. This document illustrates the performance of the RWSL surveillance improvement algorithms package with examples from DFW analysis. It is shown that the RWSL surveillance improvement algorithms package substantially reduces the impact of the known ASDE-X/DFW surveillance anomalies on the performance of the RWSL safety logic. The RWSL surveillance improvement algorithms package may also host future algorithms necessary to mitigate further problems that might be detected in the surveillance data.
READ LESS

Summary

Operational testing of the Runway Status Lights (RWSL) system at the Dallas-Fort Worth (DFW) airport has detected a number of cases where faults in the ASDE-X/DFW surveillance data have led to erroneous operation of the status lights. Among the surveillance problems noted during testing at DFW were: (a) false tracks...

READ MORE

COTS fusion tracker evaluation

Published in:
MIT Lincoln Laboratory Report ATC-302

Summary

Lincoln Laboratory was tasked by the FAA to measure the performance of a representative sample of current commercial off-the-shelf (COTS) fusion trackers. This effort included cataloging the companies that have available ATC fusion trackers, acquiring executable tracker images from as many as possible of these trackers, running the commercial tracker code on the test sets, and evaluating the performance achieved. This report presents an overall review of the state-of-the-art of fusion tracker as applied to the FAA surveillance problem. Average statistics of performance, as well as performance in special situations, are included. In each case, the performance of fusion is compared against the performance of single sensor and mosaic tracking. Thus, the advantages and disadvantages of fusion will be evident. The statistics may also permit the generation of a fusion tracker specification should the FAA decide to procure one as part of a future automation system.
READ LESS

Summary

Lincoln Laboratory was tasked by the FAA to measure the performance of a representative sample of current commercial off-the-shelf (COTS) fusion trackers. This effort included cataloging the companies that have available ATC fusion trackers, acquiring executable tracker images from as many as possible of these trackers, running the commercial tracker...

READ MORE

The Beacon Target Detector (BTD) algorithms deployed in the ASR-9 Processor Augmentation Card (9-PAC)

Published in:
MIT Lincoln Laboratory Report ATC-288

Summary

This project report describes the Beacon Target Detector (BTD) algorithms implemented in the ASR-9 Processor Augmentation Card (9-PAC). The BTD function combines replies that arise from the same aircraft to form beacon targets, and sends these beacon targets to the 9-PAC merge process where they are combined with primary radar targets. The 9-PAC BTD algorithm was designed to solve two problems with the ASR-9 Array Signal Processor (ASP) BTD: identifying and removing false beacon targets due to reflections, and preventing merging or splitting of targets due to reply overlap and garble. The BTD reflection processing algorithm marks each beacon target as either real or false, and provides this information to the 9-PAC merge process. Discrete Mode 3/A reflection false targets are identified when duplicate code reports satisfying stringent conditions are located. In order to find non-discrete Mode 3/A code reflection false targets, the BTD builds an automated, dynamic reflector database based on the geography of real and false targets with discrete Mode 3/A codes. This report supersedes an earlier report (ATC-220) which described the 9-PAC BTD algorithms prior to the operational field testing effort conducted by the FAA in 1995 and 1996. Nationwide deployment of 9-PAC on production hardware was approved in April 1999. To date, more than 60 installations have been performed, and hardware has been procured to update all 134 ASR-9s in the National Airspace System.
READ LESS

Summary

This project report describes the Beacon Target Detector (BTD) algorithms implemented in the ASR-9 Processor Augmentation Card (9-PAC). The BTD function combines replies that arise from the same aircraft to form beacon targets, and sends these beacon targets to the 9-PAC merge process where they are combined with primary radar...

READ MORE

Techniques for improved reception of 1090 MHz ADS-B signals

Published in:
17th DASC: Proc. of the 17th. Digital Avionics Systems Conf., 31 October - 7 November 1998, Vol. 2, pp. G25-1 - G25-9.

Summary

The recent development of ADS-B (Automatic Dependent Surveillance-Broadcast) is based on the use of the Mode S transponders now carried by all air carrier and commuter aircraft. ADS-B aircraft broadcast aircraft positions, identity, and other information via semi-random Mode S transponder squitters. Other aircraft or ground facilities receive the squitters and the associated position and status. Squitter reception includes the detection of the Mode S 1090 MHz waveform preamble, declaration of the bit and confidence values, error detection, and (if necessary) error correction. The current techniques for squitter reception are based upon methods developed for use in Mode S narrow-beam interrogators and for ACAS. In both of these applications, the rate of Mode NC fruit that is stronger than the Mode S waveform is relatively low, nominally less than 4,000 fruit per second. Extended squitter applications now include long range (up to 100 nmi) air-air surveillance in support of free flight. This type of surveillance is sometimes referred to as Cockpit Display of Traffic Information (CDTI). In high density environments, it is possible to operate with fruit rates of 40,000 fruit per second and higher. Operation of extended squitter in very high ModeNC fruit environments has led to the need to re-evaluate squitter reception techniques to determine if improved performance is achievable. The purpose of this paper is to provide a summary of work in progress to investigate improved squitter reception techniques. Elements of improved squitter reception being investigated include (1) the use of amplitude to improve bit and confidence declaration accuracy, (2) more capable error correction algorithms, and (3) more selective preamble detection approaches.
READ LESS

Summary

The recent development of ADS-B (Automatic Dependent Surveillance-Broadcast) is based on the use of the Mode S transponders now carried by all air carrier and commuter aircraft. ADS-B aircraft broadcast aircraft positions, identity, and other information via semi-random Mode S transponder squitters. Other aircraft or ground facilities receive the squitters...

READ MORE

The Weather-Huffman method of data compression of weather images

Published in:
MIT Lincoln Laboratory Report ATC-261

Summary

Providing an accurate picture of the weather conditions in the pilot's area of interest is a highly useful application for ground-to-air datalinks. The problem with using data links to transmit weather graphics is the large number of bits required to exactly specify the weather image. To make transmission of weather images practical, a means must be found to compress the data to a size compatible with a limited datalink capacity. The Weather-Huffman (WH) Algorithm developed in this report incorporates several subalgorithms in order to encode as faithfully as possible an input weather image within a specified datalink bit limitation. The main algorithm component is the encoding of a version of the input image via the Weather Huffman runlength code, a variant of the standard Huffman code tailored to the peculiarities of weather images. If possible, the input map itself is encoded. Generally, however, a resolution-reduced version of the map must be created prior to the encoding to meet the bit limitation. In that case, the output map will contain blocky regions, and higher weather level areas will tend to bloom in size. Two routines are included in WH to overcome these problems. The first is a Smoother Process, which corrects the blocky edges of weather regions. The second, more powerful routine, is the Extra Bit Algorithm (EBA). EBA utilizes all bits remaining in the message after the Huffman encoding to correct pixels set at too high a weather level. Both size and shape of weather regions are adjusted by this algorithim. Pictorial examples of the operation of this algorithm on several severe weather images derived from NEXRAD are presented.
READ LESS

Summary

Providing an accurate picture of the weather conditions in the pilot's area of interest is a highly useful application for ground-to-air datalinks. The problem with using data links to transmit weather graphics is the large number of bits required to exactly specify the weather image. To make transmission of weather...

READ MORE

Documentation of 9-PAC Beacon Target Detector processing function

Published in:
MIT Lincoln Laboratory Report ATC-220

Summary

This project report documents the algorithms and flow of the Beacon Target Detector (BTD) processing function incorporated as part of the ASR-9 Processor Augmentation Card (9-PAC). The BTD function combines replies that arise from the same aircraft to form beacon targets, and sends these beacon targets to the 9-PAC merge process where they are combined with primary radar reports. The 9-PAC BTD process was designed to solve two problems with the ASR-9 Array Signal Processor (ASP) BTD: identifying and removing false beacon targets due to reflections, and preventing merging or splitting of targets due to reply overlap and garble. The BTD reflection processing algorithm marks each beacon target as either real or false, and provides this information to the 9-PAC merge process. Discrete Mode A reflection false targets are identified when duplicate code reports satisfying stringent conditions are located. In order to find non-discrete Mode A code reflection false targets, the BTD builds an automated, dynamic reflector database based on the geography of pairs of discrete real and false targets.
READ LESS

Summary

This project report documents the algorithms and flow of the Beacon Target Detector (BTD) processing function incorporated as part of the ASR-9 Processor Augmentation Card (9-PAC). The BTD function combines replies that arise from the same aircraft to form beacon targets, and sends these beacon targets to the 9-PAC merge...

READ MORE

The polygon-ellipse method of data compression of weather maps

Published in:
MIT Lincoln Laboratory Report ATC-213

Summary

Providing an accurate picture of the weather conditions in the pilot's area of interest could be a highly useful application for ground-to-air data links. The problem with using data links to transmit weather pictures is the large number of bits required to exactly specify a weather image. To make transmission of weather maps practical, a means must be found to compress this image. The Polygon-Ellipse (PE) encoding algorithm developed in this report represents weather regions as ellipses, polygons, and exact patterns. The actual ellipse and polygon parameters are encoded and transmitted; the decoder algorithm redraws the shape from their encoded parameter values and fills in the included weather pixels. Special coding techniques are used in PE to compress the encoding of the shape parameters to achieve further overall compression. The PE algorithm contains procedures for gracefully degrading the fidelity of the transmitted image when necessary to meet a specified bit limit. Pictorial examples of the operation of this algorithm on both Terminal Doppler Weather Radar (TDWR) and ASR-9 radar-generated weather images are presented.
READ LESS

Summary

Providing an accurate picture of the weather conditions in the pilot's area of interest could be a highly useful application for ground-to-air data links. The problem with using data links to transmit weather pictures is the large number of bits required to exactly specify a weather image. To make transmission...

READ MORE

Encoding approaches for data link transmission of weather graphics

Published in:
MIT Lincoln Laboratory Report ATC-205

Summary

To provide pilots with necessary information to make informed decisions on the avoidance of hazardous weather and to maintain situational awareness of the weather conditions, the FAA is actively developing the capability to provide real-time graphical weather information to aircraft through the use of bandwidth-limited data links such as Mode S. The information content of weather images and the restricted bandwidth of the transmission channel require that the images be extensively compressed. This paper provides the results of a study concerning the applicability of various data compression algorithms to the weather image problem. Its conclusion is that the Polygon-Ellipse Algorithm developed at Lincoln Laboratory provides the best combination of compression, computational efficiency, and image quality for the encoding of weather images over the Mode S data link or other similarly bit-limited data links.
READ LESS

Summary

To provide pilots with necessary information to make informed decisions on the avoidance of hazardous weather and to maintain situational awareness of the weather conditions, the FAA is actively developing the capability to provide real-time graphical weather information to aircraft through the use of bandwidth-limited data links such as Mode...

READ MORE

Multisensor surveillance for improved aircraft tracking

Published in:
Lincoln Laboratory Journal, Vol. 2, No. 3, Fall 1989, pp. 381-396.

Summary

Cross-range measurements of aircraft travelling at distances of 50 to 200 miles include significant errors. Therefore, heading estimates for medium-to-long-range aircraft are not sufficiently accurate to be useful in conflict-detection predictions. Accurate crossrange measurements can be made-by using two or more sensors to measure aircraft position-but such measurements must compensate for the effects of system biases and aircraft turns. A set of algorithms has been developed that are resistant to system biases, that detect turns, and that track successfully through both biases and turns. These algorithms can be incorporated into a complete multisensor system, with good intersensor correlation of aircraft tracks and no added delays to the air traffic control processing chain.
READ LESS

Summary

Cross-range measurements of aircraft travelling at distances of 50 to 200 miles include significant errors. Therefore, heading estimates for medium-to-long-range aircraft are not sufficiently accurate to be useful in conflict-detection predictions. Accurate crossrange measurements can be made-by using two or more sensors to measure aircraft position-but such measurements must compensate...

READ MORE

Showing Results

1-10 of 15