Publications

Refine Results

(Filters Applied) Clear All

Wind-shear system cost benefit analysis update

Published in:
MIT Lincoln Laboratory Report ATC-341

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind shear detection equipment are all key protection components. While these systems have been highly effective, there are substantial costs associated with maintaining and operating ground-based systems. In addition, while over 85% of all major air carrier operations occur at airports protected by one of these ground-based wind-shear systems, the vast majority of smaller operations remain largely unprotected. This report assesses the technical and operational benefits of current and potential alternative ground-based systems as mitigations for the low-altitude wind-shear hazard. System performance and benefits for all of the current TDWR (46), ASR-9 WSP (35), and LLWAS (40) protected airports are examined, along with 40 currently unprotected airports. We considered in detail several alternatives and/or combinations for existing ground-based systems. These included the option to use data from current WSR-88D (or NEXRAD) and two potential future sensor deployments: (1) a commercially built pulsed-Doppler Lidar and (2) an X-band commercial Doppler weather radar. Wind-shear exposure estimates and simulation models for each wind shear protection component were developed for each site in order to accurately comare all alternatives. For the period 2010-2032, the current combination of wind-shear protection systems reduces teh $3.0 billion unprotected NAS overall wind-shear safety exposure to just $160 million over the entire study period. Overall, tehre were few alternatives that resulted in higher benefits than the TDWR, TDWR-LLWAS, and WSP configurations that currently exist at 81 airports. However, the cheaper operating costs of NEXRAD make it a potential alternative especially at LLWAS and non-wind-shear protected sites.
READ LESS

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind...

READ MORE

Showing Results

1-1 of 1