Publications

Refine Results

(Filters Applied) Clear All

Aperture PCB assemblies: transition to production ready designs

Published in:
6th Int. Symp. on Phased Array Systems and Technology, PAST 2016, 18-21 October 2016.
Topic:
R&D group:

Summary

MACOM designed the initial radar panels for the next generation surveillance radar with limited funds, with the philosophy that the initial design would be kept as simple as possible and that incremental improvements would be made as the program progressed, with the intent of having a tile assembly that is easy to manufacture by the first build of a larger radar (approximately 80 panels). The design is now being updated for an 80 panel order with the goal of optimizing the design electrically, for assembly and for test. This paper will discuss both the design, assembly, packaging, and test updates that are being made to have a board and board assembly that is easy to manufacture and test, with the goal of keeping cost as low as possible. These techniques will not only be used for the MPAR tiles, but also for tiles that are currently being developed for other programs.
READ LESS

Summary

MACOM designed the initial radar panels for the next generation surveillance radar with limited funds, with the philosophy that the initial design would be kept as simple as possible and that incremental improvements would be made as the program progressed, with the intent of having a tile assembly that is...

READ MORE

The evolution to modern phased array architectures

Author:
Published in:
Proceedings of the IEEE, Vol. 104, No. 3, March 2016, pp. 519-529.
Topic:
R&D group:

Summary

Phased array technology has been evolving steadily with advances in solid-state microwave integrated circuits, analysis and design tools, and reliable fabrication practices. With significant government investments, the technologies have matured to a point where phased arrays are widely used in military systems. Next-generation phased arrays will employ high levels of digitization, which enables a wide range of improvements in capability and performance. Digital arrays leverage the rapid commercial evolution of digital processor technology. The cost of phased arrays can be minimized by utilizing high-volume commercial microwave manufacturing and packaging techniques. Dramatic cost reductions are achieved by employing a tile array architecture, which greatly reduces the number of printed circuit boards and connectors in the array.
READ LESS

Summary

Phased array technology has been evolving steadily with advances in solid-state microwave integrated circuits, analysis and design tools, and reliable fabrication practices. With significant government investments, the technologies have matured to a point where phased arrays are widely used in military systems. Next-generation phased arrays will employ high levels of...

READ MORE

Secondary Surveillance Phased Array Radar (SSPAR): initial feasibility study

Summary

The U.S. Federal Aviation Administration is deploying Automatic Dependent Surveillance-Broadcast (ADS-B) to provide next-generation surveillance derived through down- and cross-link of global positioning satellite (GPS) navigation data. While ADS-B will be the primary future surveillance system, FAA recognizes that backup surveillance capabilities must be provided to assure that air traffic control (ATC) services can continue to be provided when individual aircraft transponders fail and during localized, short-duration GPS outages. This report describes a potential ADS-B backup capability, Secondary Surveillance Phased Array Radar or SSPAR. SSPAR will interrogate aircraft transponders and receive replies using a sparse, non-rotating array of approximately 17 omnidirectional (in azimuth) antennae. Each array element will transmit and receive independently so as to form directional transmit beams for transponder interrogation, and support high-resolution direction finding for received signals. Because each SSPAR element is independently digitized, transponder returns from all azimuths can be equipped with Traffic Alert and Collision Avoidance System (TCAS) and ADS-B avionics to reduce spectrum usage and maintain the high surveillance update rate (~1 per second) achieved by ADS-B. Recurring costs for SSPAR will be low since it involves no moving parts and the number of array channels is small. This report describes an SSPAR configuration supporting terminal operations. We consider interrogation and receive approaches, antenna array configuration, signal processing and preliminary performance analysis. An analysis of SSPAR's impact on spectrum congestion in the beacon radar band is presented, as are concepts for integrating SSPAR and next generation primary radar to improve the efficiency and accuracy of aircraft and weather surveillance.
READ LESS

Summary

The U.S. Federal Aviation Administration is deploying Automatic Dependent Surveillance-Broadcast (ADS-B) to provide next-generation surveillance derived through down- and cross-link of global positioning satellite (GPS) navigation data. While ADS-B will be the primary future surveillance system, FAA recognizes that backup surveillance capabilities must be provided to assure that air traffic...

READ MORE

A least mean squares approach of iterative array calibration for scalable digital phased array radar panels

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.
Topic:
R&D group:

Summary

This paper describes a semiautonomous approach to calibrate a phased array system, with particular use on an S-band aperture that is being developed at MIT Lincoln Laboratory. Each element of the array is controlled by an independent digital phase shifter, whose control signal may be uniquely defined. As active electronically steerable arrays (AESAs) continually evolve towards mostly digital paradigms that will support real-time computing, as opposed to look-up table approaches, then adaptive calibration approaches may be pursued for maximum AESA performance. This calibration work is being completed as one component of Lincoln Laboratory's effort within the multifunction phased array radar (MPAR) initiative.
READ LESS

Summary

This paper describes a semiautonomous approach to calibrate a phased array system, with particular use on an S-band aperture that is being developed at MIT Lincoln Laboratory. Each element of the array is controlled by an independent digital phase shifter, whose control signal may be uniquely defined. As active electronically...

READ MORE

A method for improved cross-pol isolation based on the use of auxiliary elements

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

This paper describes a method to answer the following questions: can several of the elements of a phased array be employed as auxiliary (AUX) elements and how can the phase of each be adjusted so that the (1) cross-polarization (cross-pol) isolation is minimized to 40 dB, (2) the sidelobe levels of the main lobe are minimally impacted, and (3) the width and height of the main lobe are minimally impacted? This calibration work is being completed as one component of Lincoln Laboratory's effort within the multifunction phased array radar (MPAR) initiative. Devoting a few of the elements to serve as the AUX channels to specifically operate to mitigate the effects of the cross-pol influence, the distributed sidelobe levels will not suffer much impact; yet, the impact of the AUX elements will have deepened the cross-pol isolation at the peak of the co-polar beam can occur because the AUX elements can achieve a high degree of narrowband angular resolution.
READ LESS

Summary

This paper describes a method to answer the following questions: can several of the elements of a phased array be employed as auxiliary (AUX) elements and how can the phase of each be adjusted so that the (1) cross-polarization (cross-pol) isolation is minimized to 40 dB, (2) the sidelobe levels...

READ MORE

On the development of a tileable LRU for the NextGen surveillance and weather radar capability program

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

MIT Lincoln Laboratory is working towards the development of a tileable radar panel to satisfy multimission needs. A combination of custom and commercial off-the-shelf (COTS) Monolithic Microwave Integrated Circuits (MMICs) have been developed and/or employed to achieve the required system functionality. The integrated circuits (ICs) are integrated into a low cost T/R module compatible with commercial printed circuit board (PCB) manufacturing. Sixty-four of the transmit/receive (T/R) modules are integrated onto the aperture PCB in an 8x8 lattice. In addition to the T/R elements, the aperture PCB incorporates transmit and receive beamformers, power and logic distribution, and radiating elements. The aperture PCB is coupled with a backplane PCB to form a panel, the line replaceable unit (LRU) for the multifunction phased array radar (MPAR) initiative. This report summarizes the evaluation of the second iteration LRU aperture PCB and T/R element. Support fixturing was developed and paired with the panel to enable backplane functionality sufficient to support the test objective.
READ LESS

Summary

MIT Lincoln Laboratory is working towards the development of a tileable radar panel to satisfy multimission needs. A combination of custom and commercial off-the-shelf (COTS) Monolithic Microwave Integrated Circuits (MMICs) have been developed and/or employed to achieve the required system functionality. The integrated circuits (ICs) are integrated into a low...

READ MORE

Showing Results

1-6 of 6