Publications

Refine Results

(Filters Applied) Clear All

Advances in cross-lingual and cross-source audio-visual speaker recognition: The JHU-MIT system for NIST SRE21

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE, MIT-LL and AGH for NIST SRE21. NIST SRE21 consisted of speaker detection over multilingual conversational telephone speech (CTS) and audio from video (AfV). Besides the regular audio track, the evaluation also contains visual (face recognition) and multi-modal tracks. This evaluation exposes new challenges, including cross-source–i.e., CTS vs. AfV– and cross-language trials. Each speaker can speak two or three languages among English, Mandarin and Cantonese. For the audio track, we evaluated embeddings based on Res2Net and ECAPA-TDNN, where the former performed the best. We used PLDA based back-ends trained on previous SRE and VoxCeleb and adapted to a subset of Mandarin/Cantonese speakers. Some novel contributions of this submission are: the use of neural bandwidth extension (BWE) to reduce the mismatch between the AFV and CTS conditions; and invariant representation learning (IRL) to make the embeddings from a given speaker invariant to language. Res2Net with neural BWE was the best monolithic system. We used a pre-trained RetinaFace face detector and ArcFace embeddings for the visual track, following our NIST SRE19 work. We also included a new system using a deep pyramid single shot face detector and face embeddings trained on Crystal loss and probabilistic triplet loss, which performed the best. The number of face embeddings in the test video was reduced by agglomerative clustering or weighting the embedding based on the face detection confidence. Cosine scoring was used to compare embeddings. For the multi-modal track, we just added the calibrated likelihood ratios of the audio and visual conditions, assuming independence between modalities. The multi-modal fusion improved Cprimary by 72% w.r.t. audio.
READ LESS

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE, MIT-LL and AGH for NIST SRE21. NIST SRE21 consisted of speaker detection over multilingual conversational telephone speech (CTS) and audio from video (AfV). Besides the regular audio track, the evaluation also contains visual (face recognition) and multi-modal tracks. This...

READ MORE

Advances in speaker recognition for multilingual conversational telephone speech: the JHU-MIT system for NIST SRE20 CTS challenge

Published in:
Speaker and Language Recognition Workshop, Odyssey 2022, pp. 338-345.

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE and MIT-LL for NIST SRE20. NIST SRE20 CTS consisted of multilingual conversational telephone speech. The set of languages included in the evaluation was not provided, encouraging the participants to develop systems robust to any language. We evaluated x-vector architectures based on ResNet, squeeze-excitation ResNets, Transformers and EfficientNets. Though squeeze-excitation ResNets and EfficientNets provide superior performance in in-domain tasks like VoxCeleb, regular ResNet34 was more robust in the challenge scenario. On the contrary, squeeze-excitation networks over-fitted to the training data, mostly in English. We also proposed a novel PLDA mixture and k-NN PLDA back-ends to handle the multilingual trials. The former clusters the x-vector space expecting that each cluster will correspond to a language family. The latter trains a PLDA model adapted to each enrollment speaker using the nearest speakers–i.e., those with similar language/channel. The k-NN back-end improved Act. Cprimary (Cp) by 68% in SRE16-19 and 22% in SRE20 Progress w.r.t. a single adapted PLDA back-end. Our best single system achieved Act. Cp=0.110 in SRE20 progress. Meanwhile, our best fusion obtained Act. Cp=0.110 in the progress–8% better than single– and Cp=0.087 in the eval set.
READ LESS

Summary

We present a condensed description of the joint effort of JHUCLSP/HLTCOE and MIT-LL for NIST SRE20. NIST SRE20 CTS consisted of multilingual conversational telephone speech. The set of languages included in the evaluation was not provided, encouraging the participants to develop systems robust to any language. We evaluated x-vector architectures...

READ MORE

The JHU-MIT System Description for NIST SRE19 AV

Summary

This document represents the SRE19 AV submission by the team composed of JHU-CLSP, JHU-HLTCOE and MIT Lincoln Labs. All the developed systems for the audio and videoconditions consisted of Neural network embeddings with some flavor of PLDA/cosine back-end. Primary fusions obtained Actual DCF of 0.250 on SRE18 VAST eval, 0.183 on SRE19 AV dev audio, 0.140 on SRE19 AV dev video and 0.054 on SRE19AV multi-modal.
READ LESS

Summary

This document represents the SRE19 AV submission by the team composed of JHU-CLSP, JHU-HLTCOE and MIT Lincoln Labs. All the developed systems for the audio and videoconditions consisted of Neural network embeddings with some flavor of PLDA/cosine back-end. Primary fusions obtained Actual DCF of 0.250 on SRE18 VAST eval, 0.183...

READ MORE

State-of-the-art speaker recognition for telephone and video speech: the JHU-MIT submission for NIST SRE18

Summary

We present a condensed description of the joint effort of JHUCLSP, JHU-HLTCOE, MIT-LL., MIT CSAIL and LSE-EPITA for NIST SRE18. All the developed systems consisted of xvector/i-vector embeddings with some flavor of PLDA backend. Very deep x-vector architectures–Extended and Factorized TDNN, and ResNets– clearly outperformed shallower xvectors and i-vectors. The systems were tailored to the video (VAST) or to the telephone (CMN2) condition. The VAST data was challenging, yielding 4 times worse performance than other video based datasets like Speakers in the Wild. We were able to calibrate the VAST data with very few development trials by using careful adaptation and score normalization methods. The VAST primary fusion yielded EER=10.18% and Cprimary= 0.431. By improving calibration in post-eval, we reached Cprimary=0.369. In CMN2, we used unsupervised SPLDA adaptation based on agglomerative clustering and score normalization to correct the domain shift between English and Tunisian Arabic models. The CMN2 primary fusion yielded EER=4.5% and Cprimary=0.313. Extended TDNN x-vector was the best single system obtaining EER=11.1% and Cprimary=0.452 in VAST; and 4.95% and 0.354 in CMN2.
READ LESS

Summary

We present a condensed description of the joint effort of JHUCLSP, JHU-HLTCOE, MIT-LL., MIT CSAIL and LSE-EPITA for NIST SRE18. All the developed systems consisted of xvector/i-vector embeddings with some flavor of PLDA backend. Very deep x-vector architectures–Extended and Factorized TDNN, and ResNets– clearly outperformed shallower xvectors and i-vectors. The...

READ MORE

Showing Results

1-4 of 4