Publications
Advances in cross-lingual and cross-source audio-visual speaker recognition: The JHU-MIT system for NIST SRE21
Summary
Summary
We present a condensed description of the joint effort of JHUCLSP/HLTCOE, MIT-LL and AGH for NIST SRE21. NIST SRE21 consisted of speaker detection over multilingual conversational telephone speech (CTS) and audio from video (AfV). Besides the regular audio track, the evaluation also contains visual (face recognition) and multi-modal tracks. This...
Advances in speaker recognition for multilingual conversational telephone speech: the JHU-MIT system for NIST SRE20 CTS challenge
Summary
Summary
We present a condensed description of the joint effort of JHUCLSP/HLTCOE and MIT-LL for NIST SRE20. NIST SRE20 CTS consisted of multilingual conversational telephone speech. The set of languages included in the evaluation was not provided, encouraging the participants to develop systems robust to any language. We evaluated x-vector architectures...
The JHU-MIT System Description for NIST SRE19 AV
Summary
Summary
This document represents the SRE19 AV submission by the team composed of JHU-CLSP, JHU-HLTCOE and MIT Lincoln Labs. All the developed systems for the audio and videoconditions consisted of Neural network embeddings with some flavor of PLDA/cosine back-end. Primary fusions obtained Actual DCF of 0.250 on SRE18 VAST eval, 0.183...
State-of-the-art speaker recognition for telephone and video speech: the JHU-MIT submission for NIST SRE18
Summary
Summary
We present a condensed description of the joint effort of JHUCLSP, JHU-HLTCOE, MIT-LL., MIT CSAIL and LSE-EPITA for NIST SRE18. All the developed systems consisted of xvector/i-vector embeddings with some flavor of PLDA backend. Very deep x-vector architectures–Extended and Factorized TDNN, and ResNets– clearly outperformed shallower xvectors and i-vectors. The...
The MITLL NIST LRE 2015 Language Recognition System
Summary
Summary
In this paper we describe the most recent MIT Lincoln Laboratory language recognition system developed for the NIST 2015 Language Recognition Evaluation (LRE). The submission features a fusion of five core classifiers, with most systems developed in the context of an i-vector framework. The 2015 evaluation presented new paradigms. First...
A unified deep neural network for speaker and language recognition
Summary
Summary
Significant performance gains have been reported separately for speaker recognition (SR) and language recognition (LR) tasks using either DNN posteriors of sub-phonetic units or DNN feature representations, but the two techniques have not been compared on the same SR or LR task or across SR and LR tasks using the...
Deep neural network approaches to speaker and language recognition
Summary
Summary
The impressive gains in performance obtained using deep neural networks (DNNs) for automatic speech recognition (ASR) have motivated the application of DNNs to other speech technologies such as speaker recognition (SR) and language recognition (LR). Prior work has shown performance gains for separate SR and LR tasks using DNNs for...
The MITLL NIST LRE 2011 language recognition system
Summary
Summary
This paper presents a description of the MIT Lincoln Laboratory (MITLL) language recognition system developed for the NIST 2011 Language Recognition Evaluation (LRE). The submitted system consisted of a fusion of four core classifiers, three based on spectral similarity and one based on tokenization. Additional system improvements were achieved following...
Language recognition via i-vectors and dimensionality reduction
Summary
Summary
In this paper, a new language identification system is presented based on the total variability approach previously developed in the field of speaker identification. Various techniques are employed to extract the most salient features in the lower dimensional i-vector space and the system developed results in excellent performance on the...
The MIT LL 2010 speaker recognition evaluation system: scalable language-independent speaker recognition
Summary
Summary
Research in the speaker recognition community has continued to address methods of mitigating variational nuisances. Telephone and auxiliary-microphone recorded speech emphasize the need for a robust way of dealing with unwanted variation. The design of recent 2010 NIST-SRE Speaker Recognition Evaluation (SRE) reflects this research emphasis. In this paper, we...