Publications
Generating a multiple-prerequisite attack graph
Summary
Summary
In one aspect, a method to generate an attack graph includes determining if a potential node provides a first precondition equivalent to one of preconditions provided by a group of preexisting nodes on the attack graph. The group of preexisting nodes includes a first state node, a first vulnerability instance...
PANEMOTO: network visualization of security situational awareness through passive analysis
Summary
Summary
To maintain effective security situational awareness, administrators require tools that present up-to-date information on the state of the network in the form of 'at-a-glance' displays, and that enable rapid assessment and investigation of relevant security concerns through drill-down analysis capability. In this paper, we present a passive network monitoring tool...
Practical attack graph generation for network defense
Summary
Summary
Attack graphs are a valuable tool to network defenders, illustrating paths an attacker can use to gain access to a targeted network. Defenders can then focus their efforts on patching the vulnerabilities and configuration errors that allow the attackers the greatest amount of access. We have created a new type...
Validating and restoring defense in depth using attack graphs
Summary
Summary
Defense in depth is a common strategy that uses layers of firewalls to protect Supervisory Control and Data Acquisition (SCADA) subnets and other critical resources on enterprise networks. A tool named NetSPA is presented that analyzes firewall rules and vulnerabilities to construct attack graphs. These show how inside and outside...
Evaluating and strengthening enterprise network security using attack graphs
Summary
Summary
Assessing the security of large enterprise networks is complex and labor intensive. Current security analysis tools typically examine only individual firewalls, routers, or hosts separately and do not comprehensively analyze overall network security. We present a new approach that uses configuration information on firewalls and vulnerability information on all network...
Passive operating system identification from TCP/IP packet headers
Summary
Summary
Accurate operating system (OS) identification by passive network traffic analysis can continuously update less-frequent active network scans and help interpret alerts from intrusion detection systems. The most recent open-source passive OS identification tool (ettercap) rejects 70% of all packets and has a high 75-class error rate of 30% for non-rejected...