Publications

Refine Results

(Filters Applied) Clear All

Capacity bounds for frequency-hopped BPSK

Published in:
2021 IEEE Military Communications Conf., MILCOM, 29 November - 2 December 2021.

Summary

In some channels, such as the frequency-hop channel, the transmission may undergo abrupt transitions in phase. This can require the receiver to re-estimate the phase on each hop, or for the system to utilize modulation techniques that lend themselves to noncoherent detection. How well the receiver can estimate the phase depends on the channel signal-to-noise ratio and how long phase coherence can be assumed. Although prior work has shown that using any reference symbols to aid the phase estimation process is suboptimal with respect to capacity, their presence may be useful in practice as they can simplify the receiver processing. In this paper, the effects of per-pulse phase uncertainty are examined for systems using binary modulation. Both the fraction of the transmission that may be devoted to reference symbols without substantially reducing the overall channel capacity and the point at which it is better to forego coherent processing in favor of noncoherent demodulation are examined.
READ LESS

Summary

In some channels, such as the frequency-hop channel, the transmission may undergo abrupt transitions in phase. This can require the receiver to re-estimate the phase on each hop, or for the system to utilize modulation techniques that lend themselves to noncoherent detection. How well the receiver can estimate the phase...

READ MORE

Application of complex split-activation feedforward networks to beamforming

Published in:
55th Asilomar Conf. on Signals, Systems and Computers, ACSSC, 31 October - 3 November 2021.

Summary

In increasingly congested RF environments and for jamming at closer ranges, amplifiers may introduce nonlinearities that linear adaptive beamforming techniques can't mitigate. Machine learning architectures are intended to solve such nonlinear least squares problems, but much of the current work and available software is limited to signals represented as real sequences. In this paper, neural networks using complex numbers to represent the complex baseband RF signals are considered. A complex backpropagation approach that calculates gradients and a Jacobian, allows for fast optimization of the neural networks. Through simulations, it is shown that complex neural networks require less training samples than their real counterparts and may generalize better in dynamic environments.
READ LESS

Summary

In increasingly congested RF environments and for jamming at closer ranges, amplifiers may introduce nonlinearities that linear adaptive beamforming techniques can't mitigate. Machine learning architectures are intended to solve such nonlinear least squares problems, but much of the current work and available software is limited to signals represented as real...

READ MORE

Distributed multi-modal sensor system for searching a foliage-covered region

Summary

We designed and constructed a system that includes aircraft, ground vehicles, and throwable sensors to search a semiforested region that was partially covered by foliage. The system contained 4 radio-controlled (RC) trucks, 2 aircraft, and 30 SensorMotes (throwable sensors). We also investigated communications links, search strategies, and system architecture. Our system is designed to be low-cost, contain a variety of sensors, and distributed so that the system is robust even if individual components are lost.
READ LESS

Summary

We designed and constructed a system that includes aircraft, ground vehicles, and throwable sensors to search a semiforested region that was partially covered by foliage. The system contained 4 radio-controlled (RC) trucks, 2 aircraft, and 30 SensorMotes (throwable sensors). We also investigated communications links, search strategies, and system architecture. Our...

READ MORE

Design of an optical photon counting array receiver system for deep-space communications

Summary

Demand for increased capacity in deep-space to Earth communications systems continues to rise as sensor data rates climb and mission requirements expand. Optical freespace laser communications systems offer the potential for operating at data rates 10 to 1000 times that of current radiofrequency systems. A key element in an optical communications system is the Earth receiver. This paper reviews the design of a distributed photon-counting receiver array composed of four meter-class telescopes, developed as a part of the Mars Laser Communications Demonstration (MLCD) project. This design offers a cost-effective and adaptable alternative approach to traditional large, single-aperture receive elements while preserving the expected improvement in data rates enabled by free-space laser communications systems. Key challenges in developing distributed receivers and details of the MLCD design are discussed.
READ LESS

Summary

Demand for increased capacity in deep-space to Earth communications systems continues to rise as sensor data rates climb and mission requirements expand. Optical freespace laser communications systems offer the potential for operating at data rates 10 to 1000 times that of current radiofrequency systems. A key element in an optical...

READ MORE

Showing Results

1-4 of 4