Publications

Refine Results

(Filters Applied) Clear All

Design of an optical photon counting array receiver system for deep-space communications

Summary

Demand for increased capacity in deep-space to Earth communications systems continues to rise as sensor data rates climb and mission requirements expand. Optical freespace laser communications systems offer the potential for operating at data rates 10 to 1000 times that of current radiofrequency systems. A key element in an optical communications system is the Earth receiver. This paper reviews the design of a distributed photon-counting receiver array composed of four meter-class telescopes, developed as a part of the Mars Laser Communications Demonstration (MLCD) project. This design offers a cost-effective and adaptable alternative approach to traditional large, single-aperture receive elements while preserving the expected improvement in data rates enabled by free-space laser communications systems. Key challenges in developing distributed receivers and details of the MLCD design are discussed.
READ LESS

Summary

Demand for increased capacity in deep-space to Earth communications systems continues to rise as sensor data rates climb and mission requirements expand. Optical freespace laser communications systems offer the potential for operating at data rates 10 to 1000 times that of current radiofrequency systems. A key element in an optical...

READ MORE

An end-to-end demonstration of a receiver array based free-space photon counting communications link

Published in:
SPIE Vol. 6304, Free-Space Laser Communications VI, 13-17 August 2006, pp. 63040H-1 - 63040H-13.

Summary

NASA anticipates a significant demand for long-haul communications service from deep-space to Earth in the near future. To address this need, a substantial effort has been invested in developing a free-space laser communications system that can be operated at data rates that are 10-1000 times higher than current RF systems. We have built an endto- end free-space photon counting testbed to demonstrate many of the key technologies required for a deep space optical receiver. The testbed consists of two independent receivers, each using a Geiger-mode avalanche photodiode detector array. A hardware aggregator combines the photon arrivals from the two receivers and the aggregated photon stream is decoded in real time with a hardware turbo decoder. We have demonstrated signal acquisition, clock synchronization, and error free communications at data rates up to 14 million bits per second while operating within 1 dB of the channel capacity with an efficiency of greater than 1 bit per incident photon.
READ LESS

Summary

NASA anticipates a significant demand for long-haul communications service from deep-space to Earth in the near future. To address this need, a substantial effort has been invested in developing a free-space laser communications system that can be operated at data rates that are 10-1000 times higher than current RF systems...

READ MORE

Showing Results

1-2 of 2