Publications
Tagged As
Loading of a surface-electrode ion trap from a remote, precooled source
Summary
Summary
We demonstrate loading of ions into a surface-electrode trap (SET) from a remote, laser-cooled source of neutral atoms. We first cool and load ~10^6 neutral 88Sr atoms into a magneto-optical trap from an oven that has no line of sight with the SET. The cold atoms are then pushed with...
Dynamical decoupling and dephasing in interacting two-level systems
Summary
Summary
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubit's transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing...
Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator
Summary
Summary
We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel...
Noise spectroscopy through dynamical decoupling with a superconducting flux qubit
Summary
Summary
Quantum coherence in natural and artificial spin systems is fundamental to applications ranging from quantum information science to magnetic-resonance imaging and identification. Several multipulse control sequences targeting generalized noise models have been developed to extend coherence by dynamically decoupling a spin system from its noisy environment. In any particular implementation...
Metastable superconducting qubit
Summary
Summary
We propose a superconducting qubit design, based on a tunable rf SQUID and nanowire kinetic inductors, which has a dramatically reduced transverse electromagnetic coupling to its environment, so that its excited state should be metastable. If electromagnetic interactions are in fact responsible for the current excited-state decay rates of superconducting...
Amplitude spectroscopy of a solid-state artificial atom
Summary
Summary
The energy-level structure of a quantum system, which has a fundamental role in its behaviour, can be observed as discrete lines and features in absorption and emission spectra. Conventionally, spectra are measured using frequency spectroscopy, whereby the frequency of a harmonic electromagnetic driving field is tuned into resonance with a...
High-fidelity quantum operations on superconducting qubits in the presence of noise
Summary
Summary
We present a scheme for implementing quantum operations with superconducting qubits. Our approach "coupler" qubit to mediate a controllable interaction between data qubits, pulse sequences which strongly mitigate the effects of 1/f flux noise, and a high-Q resonator-based local memory. We develop a Monte Carlo simulation technique capable of describing...
Microwave-induced cooling of a superconducting qubit
Summary
Summary
We demonstrated microwave-induced cooling in a superconducting flux qubit. The thermal population in the first-excited state of the qubit is driven to a higher-excited state by way of a sideband transition. Subsequent relaxation into the ground state results in cooling. Effective temperatures as low as ≈3 millikelvin are achieved for...
Mach-Zehnder interferometry in a strongly driven superconducting qubit
Summary
Summary
We demonstrate Mach-Zehnder-type interferometry in a superconducting flux qubit. The qubit is a tunable artificial atom, the ground and excited states of which exhibit an avoided crossing. Strongly driving the qubit with harmonic excitation sweeps it through the avoided crossing two times per period. Because the induced Landau-Zener transitions act...