Publications

Refine Results

(Filters Applied) Clear All

Dwell scheduling algorithms for phased array antenna

Published in:
IEEE Trans. Aerosp. Electron. Syst., Vol. 49, No. 1, January 2013, pp. 42-54.

Summary

In a multifunctional radar performing searching and tracking operations, the maximum number of targets that can be managed is an important measure of performance. One way a radar can maximize tracking performance is to optimize its dwell scheduling. The problem of designing efficient dwell scheduling algorithms for various tracking and searching scenarios with respect to various objective functions has been considered many times in the past and many solutions have been proposed. We consider the dwell scheduling problem for two different scenarios where the only objective is to maximize the number of dwells scheduled during a scheduling period. We formulate the problem as a distributed and a nondistributed bin packing problem and present optimal solutions using an integer programming formulation. Obtaining an optimal solution gives the limit of radar performance. We also present a more computationally friendly but less optimal solution using a greedy approach.
READ LESS

Summary

In a multifunctional radar performing searching and tracking operations, the maximum number of targets that can be managed is an important measure of performance. One way a radar can maximize tracking performance is to optimize its dwell scheduling. The problem of designing efficient dwell scheduling algorithms for various tracking and...

READ MORE

Characterizing the optical variability of bright blazars: variability-based selection of fermi active galactic nuclei

Summary

We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of y -ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability T , and driving amplitudes on short timescales ^sigma. Imposing cuts on minimum T and ^sigma allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several arcminute error ellipses of y -ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E >/ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other y -ray blazars and is likely to be the y -ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ~3 years in the rest frame of the jet, in contrast with the ~320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics.
READ LESS

Summary

We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ~30% of y -ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid...

READ MORE

Exploring the variable sky with LINEAR : photometric recalibration with the Sloan Digital Sky Survey

Published in:
Astronomical J., Vol. 142, No. 6, December 2011.

Summary

We describe photometric recalibration of data obtained by the asteroid survey LINEAR. Although LINEAR was designed for astrometric discovery of moving objects, the data set described here contains over 5 billion photometric measurements for about 25 million objects, mostly stars. We use Sloan Digital Sky Survey (SDSS) data from the overlapping ~10,000 deg2 of sky to recalibrate LINEAR photometry and achieve errors of 0.03 mag for sources not limited by photon statistics with errors of 0.2 mag at r ~ 18. With its 200 observations per object on average, LINEAR data provide time domain information for the brightest four magnitudes of the SDSS survey. At the same time, LINEAR extends the deepest similar wide-area variability survey, the Northern Sky Variability Survey, by 3 mag.We briefly discuss the properties of about 7000 visually confirmed periodic variables, dominated by roughly equal fractions of RR Lyrae stars and eclipsing binary stars, and analyze their distribution in optical and infrared color?color diagrams. The LINEAR data set is publicly available from the SkyDOT Web site.
READ LESS

Summary

We describe photometric recalibration of data obtained by the asteroid survey LINEAR. Although LINEAR was designed for astrometric discovery of moving objects, the data set described here contains over 5 billion photometric measurements for about 25 million objects, mostly stars. We use Sloan Digital Sky Survey (SDSS) data from the...

READ MORE

Pre-discovery observations of disrupting asteroid P/2010 A2

Published in:
Astronom. J., Vol. 142, No. 29, July 2011.

Summary

Solar system object P/2010 A2 is the first-noticed example of the aftermath of a recently disrupted asteroid, probably resulting from a collision. Nearly a year elapsed between its inferred initiation in early 2009 and its eventual detection in early 2010. Here, we use new observations to assess the factors underlying the visibility, especially to understand the delayed discovery. We present pre-discovery observations from the LINEAR telescope and set limits to the early-time brightness from SOHO and STEREO satellite coronagraphic images. Consideration of the circumstances of discovery of P/2010 A2 suggests that similar objects must be common, and that future all-sky surveys will reveal them in large numbers.
READ LESS

Summary

Solar system object P/2010 A2 is the first-noticed example of the aftermath of a recently disrupted asteroid, probably resulting from a collision. Nearly a year elapsed between its inferred initiation in early 2009 and its eventual detection in early 2010. Here, we use new observations to assess the factors underlying...

READ MORE

Detecting asteroids with a multi-hypothesis velocity matched filter

Published in:
ACM 2008, 10th Asteroids, Comets Meteors Mtg., 14-18 July 2008.

Summary

We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter (VMF), which combines the signal from multiple frames in order to increase the aggregate SNR for dim objects. By generating a series of hypotheses about the apparent velocities of potential objects, we create a set of highly sensitive velocity-specific filters, the results of which are combined to achieve complete coverage of the search space. Each filter collapses a set of sidereal frames into a single frame through a shifted sum operation, thus aggregating the signal from the entire frameset and increasing SNR for objects matching the hypothesized velocity. We also present additional signal processing steps designed to filter out a variety of noise sources such as stars, spacecraft, and background gradients.
READ LESS

Summary

We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter...

READ MORE

Bias-corrected population, size distribution, and impact hazard for the near-Earth objects

Published in:
Icarus, Vol. 170, No. 2, August 2004, pp. 295-311.

Summary

Utilizing the largest available data sets for the observed taxonomic and albedo distributions of the near-Earth object population, we model the bias-corrected population. Diameter-limited fractional abundances of the taxonomic complexes are A-0.2%; C-10%, D-17%, O-0.5%, Q-14%, R-0.1%, S-22%, U-0.4%, V-1%, X-34%. In a diameter-limited sample, ~30% of the NEO population has jovian Tisserand parameter less than 3, where the D-types and X-types dominate. The large contribution from the X-types is surprising and highlights the need to better understand this group with more albedo measurements. Combining the C, D, and X complexes into a "dark" group and the others into a "bright" group yields a debiased darkto- bright ratio of ~1.6. Overall, the bias-corrected mean albedo for the NEO population is 0.14 +/-0.02, for which an H magnitude of 17.8 +/-0.1 translates to a diameter of 1 km, in close agreement with Morbidelli et al. Coupling this bias corrected taxonomic and albedo model with the H magnitude dependent size distribution of yields a diameter distribution with 1090 +/-180 NEOs with diameters larger than 1 km. As of 2004 June, the Spaceguard Survey has discovered 56% of the NEOs larger than 1 km. Using our size distribution model, and orbital distribution of we calculate the frequency of impacts into the Earth and the Moon. Globally destructive collisions (~10 ^21 J) of asteroids 1 km or larger strike the Earth once every 0.60 +/-0.1 Myr on average. Regionally destructive collisions with impact energy greater than 4 x 10 ^18 J (~200 m diameter) strike the Earth every 56,000 +/-6000 yr. Collisions in the range of the Tunguska event (4-8 x 10^16 J) occur every 2000-3000 yr. These values represent the average time between randomly spaced impacts; actual impacts could occur more or less closely spaced solely by chance. As a verification of these impact rates, the crater production function of Shoemaker et al. has been updated by combining this new population model with a crater formation model to find that the observed crater production function on both the Earth and Moon agrees with the rate of crater production expected from the current population of NEOs.
READ LESS

Summary

Utilizing the largest available data sets for the observed taxonomic and albedo distributions of the near-Earth object population, we model the bias-corrected population. Diameter-limited fractional abundances of the taxonomic complexes are A-0.2%; C-10%, D-17%, O-0.5%, Q-14%, R-0.1%, S-22%, U-0.4%, V-1%, X-34%. In a diameter-limited sample, ~30% of the NEO population...

READ MORE

Initial flight test results from the EO-1 Advanced Land Imager: radiometric performance

Published in:
IGARSS 2001, Int. Geoscience and Remote Sensing Symp., Vol. 1, 9-13 July 2001, pp. 515-417.

Summary

The Advanced Land Imager (ALI) is one of three instruments flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The primary NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass and schedule for future, Landsat-like, earth remote sensing instruments. ALI contains a number of innovative features, including all the Category 1 technology demonstrations of the EO-1 mission. These include the basic instrument architecture which employs a push-broom data collection mode, a wide field of view optical design, compact multispectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics and a multi-level solar calibration technique. The Earth Observing-1 spacecraft was successfully launched on November 21, 2000. During the first sixty days on orbit, several Earth scenes were collected and on-orbit calibration techniques were exercised by the Advanced Land Imager. This paper presents the status of ALI radiometric performance characterization obtained from the data collected during that period.
READ LESS

Summary

The Advanced Land Imager (ALI) is one of three instruments flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). The primary NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass and schedule for future, Landsat-like, earth remote...

READ MORE

Lincoln Near-Earth Asteroid Program (LINEAR)

Published in:
Icarus J., Vol. 148, No. 1, November 2000, pp. 21-28.

Summary

The Lincoln Near-Earth Asteroid Research (LINEAR) program has applied electro-optical technology developed for Air Force Space Surveillance applications to the problem of discovering near-Earth asteroids (NEAs) and comets. This application is natural due to the commonality between the surveillance of the sky for man-made satellites and the search for near-Earth objects (NEOs). Both require the efficient search of broad swaths of sky to detect faint, moving objects. Currently, the Air Force Ground-based Electro-Optic Deep Space Surveillance (GEODSS) systems, which operate as part of the worldwide U.S. space surveillance network, are being upgraded to state-of-the-art charge-coupled device (CCD) detectors. These detectors are based on recent advances made by MIT Lincoln Laboratory in the fabrication of large format, highly sensitive CCDs. In addition, state-of-the-art data processing algorithms have been developed to employ the new detectors for search operations. In order to address stressing space surveillance requirements, the Lincoln CCDs have a unique combination of features, including large format, high quantum efficiency, frame transfer, high readout rate, and low noise, not found on any commercially available CCD. Systems development for the GEODSS upgrades has been accomplished at the Lincoln Laboratory Experimental Test Site (ETS) located near Socorro, New Mexico, over the past several years. Starting in 1996, the Air Force funded a small effort to demonstrate the effectiveness of the CCD and broad area search technology when applied to the problem of finding asteroids and comets. This program evolved into the current LINEAR program, which is jointly funded by the Air Force Office of Scientific Research and NASA. LINEAR, which started full operations in March of 1998, has discovered through September of 1999, 257 NEAs (of 797 known to date), 11 unusual objects (of 44 known), and 32 comets. Currently, LINEAR is contributing ~70% of the worldwide NEA discovery rate and has single-handedly increased the observations submitted to the Minor Planet Center by a factor of 10. This paper covers the technology used by the program, the operations, and the detailed results of the search efforts.
READ LESS

Summary

The Lincoln Near-Earth Asteroid Research (LINEAR) program has applied electro-optical technology developed for Air Force Space Surveillance applications to the problem of discovering near-Earth asteroids (NEAs) and comets. This application is natural due to the commonality between the surveillance of the sky for man-made satellites and the search for near-Earth...

READ MORE

The Lincoln Near-Earth Asteroid Research (LINEAR) Program

Published in:
Lincoln Laboratory Journal, Vol. 11, No. 1, 1998, pp. 27-40.

Summary

Lincoln Laboratory has been developing electro-optical space-surveillance technology to detect, characterize, and catalog satellites for more than forty years. Recent advances in highly sensitive, large-format charge-coupled devices (CCDs) allow this technology to be applied to detecting and cataloging asteroids, including near-Earth objects (NEOs). When equipped with a new Lincoln Laboratory focal-plane camera and signal processing technology, the 1-m U.S. Air Force ground-based electro-optical deep-space surveillance (GEODSS) telescopes can conduct sensitive large-coverage searches for Earth-crossing and main-belt asteroids. Field measurements indicate that these enhanced telescopes can achieve a limiting magnitude of 22 over a 2-deg2 field of view with less than 100 sec of integration. This sensitivity rivals that of much larger telescopes equipped with commercial cameras. Working two years under U.S. Air Force sponsorship, we have developed technology for asteroid search operations at the Lincoln Laboratory Experimental Test Site near Socorro, New Mexico. By using a new large-format 2560 X 1960-pixel frame-transfer CCD camera, we have discovered over 10,000 asteroids, including 53 NEOs and 4 comets as designated by the Minor Planet Center (MPC). In March 1998, the Lincoln Near-Earth Asteroid Research (LINEAR) program provided over 150,000 observations of asteroids--nearly 90% of the world's asteroid observations that month--to the MPC, which resulted in the discovery of 13 NEOs and 1 comet. The MPC indicates that the LINEAR program outperforms all asteroid search programs operated to date.
READ LESS

Summary

Lincoln Laboratory has been developing electro-optical space-surveillance technology to detect, characterize, and catalog satellites for more than forty years. Recent advances in highly sensitive, large-format charge-coupled devices (CCDs) allow this technology to be applied to detecting and cataloging asteroids, including near-Earth objects (NEOs). When equipped with a new Lincoln Laboratory...

READ MORE

Air Force planetary defense system: initial field test results

Published in:
Proc. of the Fifth Int. Conf. on Space '96: Engineering, Construction, and Operations in Space V, 1-6 June 1996, pp. 46-53.

Summary

Over the past several years, the Air Force has been developing new devices and technology for the detection and tracking of earth orbiting satellites. This technology has been targeted to provide an upgraded capability for an operational space surveillance system called GEODSS. Currently, a number of GEODSS systems are deployed around the world as part of the world-wide space surveillance system operated by the US Air Force. Each GEODSS site is currently equipped with 1-meter class telescopes and EBSICON detector systems which represent 1970's technology. The Air Force is now in the process of upgrading the GEODSS system to achieve the performance offered by state of the art detector systems. Under Air Force sponsorship, Lincoln Laboratory has developed a new generation of sensitive, large format, frame transfer CCD focal planes for GEODSS. These focal planes have been installed in a new generation of cameras and are currently undergoing testing at the Lincoln Laboratory Experimental Test Site (ETS). When equipped with the new focal plane and camera technology, the modest sized GEODSS telescopes have considerable capability to conduct large coverage, sensitive searches for earth crossing asteroids. Theoretical analysis has indicated that the CCD equipped GEODSS telescope will be capable of achieving a limiting magnitude of 22, over a 2 sq/deg field of view, with about 100 seconds of integration. This is comparable to the sensitivity of considerably larger telescopes equipped with current cameras. In addition to the high sensitivity, the CCD is configured for frame transfer operations which are well suited to asteroid search operations. This paper will present the results of the initial system tests conducted at the ETS and will discuss how this technology fits into a concept of operations for a planetary defense system based on the Air Force developed technology.
READ LESS

Summary

Over the past several years, the Air Force has been developing new devices and technology for the detection and tracking of earth orbiting satellites. This technology has been targeted to provide an upgraded capability for an operational space surveillance system called GEODSS. Currently, a number of GEODSS systems are deployed...

READ MORE