Summary
Over the past several years, the Air Force has been developing new devices and technology for the detection and tracking of earth orbiting satellites. This technology has been targeted to provide an upgraded capability for an operational space surveillance system called GEODSS. Currently, a number of GEODSS systems are deployed around the world as part of the world-wide space surveillance system operated by the US Air Force. Each GEODSS site is currently equipped with 1-meter class telescopes and EBSICON detector systems which represent 1970's technology. The Air Force is now in the process of upgrading the GEODSS system to achieve the performance offered by state of the art detector systems. Under Air Force sponsorship, Lincoln Laboratory has developed a new generation of sensitive, large format, frame transfer CCD focal planes for GEODSS. These focal planes have been installed in a new generation of cameras and are currently undergoing testing at the Lincoln Laboratory Experimental Test Site (ETS). When equipped with the new focal plane and camera technology, the modest sized GEODSS telescopes have considerable capability to conduct large coverage, sensitive searches for earth crossing asteroids. Theoretical analysis has indicated that the CCD equipped GEODSS telescope will be capable of achieving a limiting magnitude of 22, over a 2 sq/deg field of view, with about 100 seconds of integration. This is comparable to the sensitivity of considerably larger telescopes equipped with current cameras. In addition to the high sensitivity, the CCD is configured for frame transfer operations which are well suited to asteroid search operations. This paper will present the results of the initial system tests conducted at the ETS and will discuss how this technology fits into a concept of operations for a planetary defense system based on the Air Force developed technology.