Publications
Toward improving EN adoption: Bridging the gap between stated intention and actual use
Summary
Summary
As the COVID-19 pandemic swept the globe in the spring of 2020, technologists looked to enlist technology to assist public health authorities (PHAs) and help stem the tide of infections. As part of this technology push, experts in health care, cryptography, and other related fields developed the Private Automated Contact...
Beyond expertise and roles: a framework to characterize the stakeholders of interpretable machine learning and their needs
Summary
Summary
To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and role-based categorizations of interpretability stakeholders in favor of a more granular framework that decouples...
Towards a distributed framework for multi-agent reinforcement learning research
Summary
Summary
Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into...
Automated discovery of cross-plane event-based vulnerabilities in software-defined networking
Summary
Summary
Software-defined networking (SDN) achieves a programmable control plane through the use of logically centralized, event-driven controllers and through network applications (apps) that extend the controllers' functionality. As control plane decisions are often based on the data plane, it is possible for carefully crafted malicious data plane inputs to direct the...
The leakage-resilience dilemma
Summary
Summary
Many control-flow-hijacking attacks rely on information leakage to disclose the location of gadgets. To address this, several leakage-resilient defenses, have been proposed that fundamentally limit the power of information leakage. Examples of such defenses include address-space re-randomization, destructive code reads, and execute-only code memory. Underlying all of these defenses is...
Artificial intelligence: short history, present developments, and future outlook, final report
Summary
Summary
The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the...
Balancing security and performance for agility in dynamic threat environments
Summary
Summary
In cyber security, achieving the desired balance between system security and system performance in dynamic threat environments is a long-standing open challenge for cyber defenders. Typically an increase in system security comes at the price of decreased system performance, and vice versa, easily resulting in systems that are misaligned to...
Simulation based evaluation of a code diversification strategy
Summary
Summary
Periodic randomization of a computer program's binary code is an attractive technique for defending against several classes of advanced threats. In this paper we describe a model of attacker-defender interaction in which the defender employs such a technique against an attacker who is actively constructing an exploit using Return Oriented...
Guaranteeing spoof-resilient multi-robot networks
Summary
Summary
Multi-robot networks use wireless communication to provide wide-ranging services such as aerial surveillance and unmanned delivery. However, effective coordination between multiple robots requires trust, making them particularly vulnerable to cyber-attacks. Specifically, such networks can be gravely disrupted by the Sybil attack, where even a single malicious robot can spoof a...
Analyzing Mission Impacts of Cyber Actions (AMICA)
Summary
Summary
This paper describes AMICA (Analyzing Mission Impacts of Cyber Actions), an integrated approach for understanding mission impacts of cyber attacks. AMICA combines process modeling, discrete-event simulation, graph-based dependency modeling, and dynamic visualizations. This is a novel convergence of two lines of research: process modeling/simulation and attack graphs. AMICA captures process...