Publications

Refine Results

(Filters Applied) Clear All

Hyperspectral environmental suite for the Geostationary Operational Environmental Satellite (GOES)

Published in:
SPIE Vol. 5425, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery X, 12-15 April 2004, pp. 329-340.

Summary

The GOES satellites will fly a Hyperspectral Environmental Suite (HES) on GOES-R in the 2012 timeframe. The approximately 1500 spectral channels (technically ultraspectral), leading to improved vertical resolution, and approximately five times faster coverage rate planned for the sounder in this suite will greatly exceed the capabilities of the current GOES series instrument with its 18 spectral channels. In the GOES-R timeframe, frequent measurements afforded by geostationary orbits will be critical for numerical weather prediction models. Since the current GOES soundings are assimilated into numerical weather prediction models to improve the validity of model outputs, particularly in areas with little radiosonde coverage, this hyperspectral capability in the thermal infrared will significantly improve sounding performance for weather prediction in the western hemisphere, while providing and enhancing other products. Finer spatial resolution is planned for mesoscale observation of water vapor variations. The improvements over the previous GOES sounders and a primary difference from other planned instruments stem from two-dimensional focal plane array availability. These carry an additional set of challenges in terms of instrument specifications, which will be discussed. As a suite, HES is planned with new capabilities for coastal ocean coverage with the goal of including open ocean coverage. These new planned imaging applications, which will be either multispectral or hyperspectral, will also be discussed.
READ LESS

Summary

The GOES satellites will fly a Hyperspectral Environmental Suite (HES) on GOES-R in the 2012 timeframe. The approximately 1500 spectral channels (technically ultraspectral), leading to improved vertical resolution, and approximately five times faster coverage rate planned for the sounder in this suite will greatly exceed the capabilities of the current...

READ MORE

Architectural trades for an advanced geostationary atmospheric sounding instrument

Summary

The process of formulating a remote sensing instrument design from a set of observational requirements involves a series of trade studies during which judgments are made between available design options. The outcome of this process is a system architecture which drives the size, weight, power consumption, cost, and technological risk of the instrument. In this paper, a set of trade studies are described which guided the development of a baseline sensor design to provide vertical profiles (soundings) of atmospheric temperature and humidity from future Geostationary Operational Environmental Satellite (GOES) platforms. Detailed trade studies presented include the choice between an interferometric versus a dispersive spectrometer, the optical design of the IR interferometer and visible imaging channel, the optimization of the instrument spatial response, the selection of detector array materials, operating temperatures, and array size, the thermal design for detector and optics cooling, and the electronics required to process detected interferograms into spectral radiance. The trade study process was validated through simulations of the radiometric performance of the instrument, and through simulated retrievals of vertical profiles of atmospheric temperature and humidity. The flexibility of these system trades is emphasized, highlighting the differing outcomes that occur from this process as system requirements evolve. Observations are made with respect to the reliability and readiness of key technologies. The results of this study were disseminated to industry to assist their interpretation of, and responses to, system requirements provided by the U.S. Government.
READ LESS

Summary

The process of formulating a remote sensing instrument design from a set of observational requirements involves a series of trade studies during which judgments are made between available design options. The outcome of this process is a system architecture which drives the size, weight, power consumption, cost, and technological risk...

READ MORE

Showing Results

1-2 of 2