Publications

Refine Results

(Filters Applied) Clear All

Photonic lantern kW-class fiber amplifier

Published in:
Opt. Express, Vol. 25, No. 22, 30 October 2017, pp. 27543-27550.

Summary

Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control and a photonic lantern front end was achieved. An array of three single-mode fiber inputs was used to adaptively inject the appropriate superposition of input modes in a three-mode gain fiber to achieve the desired mode at the output. Mode fluctuations at high power were compensated by adjusting the relative phase, amplitude, and polarization of the single-mode fiber inputs. The outlook for further power scaling and adaptive-optic compensation is described.
READ LESS

Summary

Pump-limited kW-class operation in a multimode fiber amplifier using adaptive mode control and a photonic lantern front end was achieved. An array of three single-mode fiber inputs was used to adaptively inject the appropriate superposition of input modes in a three-mode gain fiber to achieve the desired mode at the...

READ MORE

Efficient cryogenic near-infrared Tm:YLF laser

Published in:
Opt. Express, Vol. 25, No. 12, 12 June 2017, 13408.

Summary

Operation of a cw thulium laser emitting at 816 nm has been demonstrated in bulk Tm:YLF with 46% slope efficiency. Prior cw demonstrations of this transition have been limited to ZBLAN fiber hosts and prior lasing in bulk crystalline host material has been limited to quasi-cw operation due to population trapping. Trapping at the 3F4 level was mitigated by co-lasing at 1876 nm. The co-lasing technique should be applicable to room-temperature operation and to power scaling of YLF and other crystal hosts.
READ LESS

Summary

Operation of a cw thulium laser emitting at 816 nm has been demonstrated in bulk Tm:YLF with 46% slope efficiency. Prior cw demonstrations of this transition have been limited to ZBLAN fiber hosts and prior lasing in bulk crystalline host material has been limited to quasi-cw operation due to population...

READ MORE

Picosecond kilohertz-class cryogenically cooled multistage Yb-doped chirped pulse amplifier

Published in:
Opt. Lett., Vol. 42, No. 4, 15 February 2017, pp. 707-710.

Summary

A multistage cryogenic chirped pulse amplifier has been developed, utilizing two different Yb-doped gain materials in subsequent amplifier stages. A Yb:GSAG regenerative amplifier followed by a Yb:YAG power amplifier is able to deliver pulses with a broader bandwidth than a system using only one of these two gain media throughout. We demonstrate 90 mJ of pulse energy (113 W of average power) uncompressed and 67 mJ (84 W of average power) compressed at 1.25 kHz pulse repetition frequency, 3.0 ps FWHM Gaussian pulse width, and near-diffraction-limited (M^2 < 1.3) beam quality.
READ LESS

Summary

A multistage cryogenic chirped pulse amplifier has been developed, utilizing two different Yb-doped gain materials in subsequent amplifier stages. A Yb:GSAG regenerative amplifier followed by a Yb:YAG power amplifier is able to deliver pulses with a broader bandwidth than a system using only one of these two gain media throughout...

READ MORE

Diode-pumped narrow linewidth multi-kW metalized Yb fiber amplifier

Published in:
Advanced Solid State Lasers, 30 October - 3 November 2016.

Summary

We investigate high brightness pumping of a multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 um, 0.2 NA multi-mode fiber. Gold-coated specialty gain fibers, with 17 um MFD and 5-dB/meter pump absorption, have been developed. The maximum fiber amplifier output power is 3.1 kW, limited by multi-mode instability, with 90% O-O efficiency 12 GHz Linewidth and M2 < 1.15.
READ LESS

Summary

We investigate high brightness pumping of a multi-kW Yb fiber amplifier in a bi-directional pumping configuration. Each pump outputs 2 kW in a 200 um, 0.2 NA multi-mode fiber. Gold-coated specialty gain fibers, with 17 um MFD and 5-dB/meter pump absorption, have been developed. The maximum fiber amplifier output power...

READ MORE

Photonic lantern adaptive spatial mode control in LMA fiber amplifiers

Published in:
Opt. Express, Vol. 24, No. 4, 22 February 2016, pp. 3405-13.

Summary

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
READ LESS

Summary

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By...

READ MORE

Cryogenically cooled, 149 W, Q-switched, YbLiYF4 laser

Published in:
Opt. Lett., Vol. 38, No. 20, 15 October 2013, pp. 4260-1.

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic effects and high thermal efficiency. The measured heat load to the cryogen is 0.15 W per watt of output. These results show the potential for significant power scaling of Q-switched Yb:YLF lasers with excellent beam quality.
READ LESS

Summary

We demonstrate a 149 W Yb:LiYF4 laser with diffraction-limitation beam quality at 995 nm. The laser, Q-switched at 10 kHz pulse repetition frequency, produces linearly polarized 52 ns pulses with a slope efficiency of 73%. The combination of cryogenic cooling and a low (3.5%) quantum defect results in minimal thermo-optic...

READ MORE

High efficiency coherent beam combining of semiconductor optical amplifiers

Published in:
Opt. Lett., Vol. 37, No. 23, 1 December 2012, pp. 5006-5008.

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was achieved via active feedback on each amplifier's drive current to maximize the power in the combined beam. The combining efficiency at all current levels was nearly constant at 87%.
READ LESS

Summary

We demonstrate 40 W coherently combined output power in a single diffraction-limited beam from a one-dimensional 47-element array of angled-facet slab-coupled optical waveguide amplifiers at 1064 nm. The output from each emitter was collimated and overlapped onto a diffractive optical element combiner using a common transform lens. Phase locking was...

READ MORE

Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system

Published in:
Opt. Lett., Vol. 37, No. 13, 1 July 2012, pp. 2700-2702.

Summary

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency in a regenerative amplifier. The second-stage, multipass amplifier increases the pulse energy to 10.6 mJ, resulting in a spectral width of 2.2 nm. The pulses are compressed to 865 fs in duration, which is 1.26 times the transform limit.
READ LESS

Summary

We present a high-repetition-frequency, diode-pumped, and chirped-pulse amplification system operating at 106 W average output with excellent beam quality (M^2 = 1.3), based on cryogenically cooled Yb:YLF. 1 nJ seed pulses, derived from a mode-locked Ti:sapphire laser, are first amplified to 1 mJ pulse energy at 10 kHz repetition frequency...

READ MORE

External cavity beam combining of 21 semiconductor lasers using SPGD

Published in:
Appl. Opt., Vol. 51, No. 11, 10 April 2012, pp. 1724-1728.

Summary

Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with an upper limit of 90% efficiency in the particular configuration of the experiment. Our beam combining system utilizes a stochastic parallel gradient descent (SPGD) algorithm for active phase control. This work demonstrates that active beam combining is not subject to the scaling limits imposed on passive-phasing systems.
READ LESS

Summary

Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with...

READ MORE

Diffractive beam combining of a 2.5-kW fiber laser array

Published in:
ASSP 2012, Advanced Solid-State Photonics, 29 January - 1 February 2012.

Summary

Five 500-W fiber amplifiers were coherently combined with 79% efficiency using a diffractive optical element (DOE) combiner, generating a single beam whose M^2 = 1.1 beam quality exceeded that of the inputs.
READ LESS

Summary

Five 500-W fiber amplifiers were coherently combined with 79% efficiency using a diffractive optical element (DOE) combiner, generating a single beam whose M^2 = 1.1 beam quality exceeded that of the inputs.

READ MORE

Showing Results

1-10 of 16