Publications
A knowledge-based operator for a genetic algorithm which optimizes the distribution of sparse matrix data
Summary
Summary
We present the Hogs and Slackers genetic algorithm (GA) which addresses the problem of improving the parallelization efficiency of sparse matrix computations by optimally distributing blocks of matrices data. The performance of a distribution is sensitive to the non-zero patterns in the data, the algorithm, and the hardware architecture. In...
Hogs and slackers: using operations balance in a genetic algorithm to optimize sparse algebra computation on distributed architectures
Summary
Summary
We present a framework for optimizing the distributed performance of sparse matrix computations. These computations are optimally parallelized by distributing their operations across processors in a subtly uneven balance. Because the optimal balance point depends on the non-zero patterns in the data, the algorithm, and the underlying hardware architecture, it...
High-productivity software development with pMATLAB
Summary
Summary
In this paper, we explore the ease of tackling a communication-intensive parallel computing task - namely, the 2D fast Fourier transform (FFT). We start with a simple serial Matlab code, explore in detail a ID parallel FFT, and illustrate how it can be extended to multidimensional FFTs.
Technical challenges of supporting interactive HPC
Summary
Summary
Users' demand for interactive, on-demand access to a large pool of high performance computing (HPC) resources is increasing. The majority of users at Massachusetts Institute of Technology Lincoln Laboratory (MIT LL) are involved in the interactive development of sensor processing algorithms. This development often requires a large amount of computation...
Introduction to parallel programming and pMatlab v2.0
Summary
Summary
The computational demands of software continue to outpace the capacities of processor and memory technologies, especially in scientific and engineering programs. One option to improve performance is parallel processing. However, despite decades of research and development, writing parallel programs continues to be difficult. This is especially the case for scientists...