Publications
75,000,000,000 streaming inserts/second using hierarchical hypersparse GraphBLAS matrices
Summary
Summary
The SuiteSparse GraphBLAS C-library implements high performance hypersparse matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave). GraphBLAS provides a lightweight in-memory database implementation of hypersparse matrices that are ideal for analyzing many types of network data, while providing rigorous mathematical guarantees, such as linearity. Streaming updates...
Large scale parallelization using file-based communications
Summary
Summary
In this paper, we present a novel and new file-based communication architecture using the local filesystem for large scale parallelization. This new approach eliminates the issues with filesystem overload and resource contention when using the central filesystem for large parallel jobs. The new approach incurs additional overhead due to inter-node...
Streaming 1.9 billion hyperspace network updates per second with D4M
Summary
Summary
The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in a variety of languages (Python, Julia, and Matlab/Octave) and provides a lightweight in-memory database implementation of hypersparse arrays that are ideal for analyzing many types of network data. D4M relies on associative arrays which combine properties of spreadsheets...
A billion updates per second using 30,000 hierarchical in-memory D4M databases
Summary
Summary
Analyzing large scale networks requires high performance streaming updates of graph representations of these data. Associative arrays are mathematical objects combining properties of spreadsheets, databases, matrices, and graphs, and are well-suited for representing and analyzing streaming network data. The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in...
Hyperscaling internet graph analysis with D4M on the MIT SuperCloud
Summary
Summary
Detecting anomalous behavior in network traffic is a major challenge due to the volume and velocity of network traffic. For example, a 10 Gigabit Ethernet connection can generate over 50 MB/s of packet headers. For global network providers, this challenge can be amplified by many orders of magnitude. Development of...
Interactive supercomputing on 40,000 cores for machine learning and data analysis
Summary
Summary
Interactive massively parallel computations are critical for machine learning and data analysis. These computations are a staple of the MIT Lincoln Laboratory Supercomputing Center (LLSC) and has required the LLSC to develop unique interactive supercomputing capabilities. Scaling interactive machine learning frameworks, such as TensorFlow, and data analysis environments, such as...
A parallel implementation of FANO using OpenMP and MPI
Summary
Summary
We present a parallel implementation of the Fast Accurate NURBS Optimization (FANO) program using OpenMP and MPI. The software is used for designing imaging freeform optical systems comprised of NURBS surfaces. An important step in the design process is the optimization of the shape and position of the optical surfaces...
Measuring the impact of Spectre and Meltdown
Summary
Summary
The Spectre and Meltdown flaws in modern microprocessors represent a new class of attacks that have been difficult to mitigate. The mitigations that have been proposed have known performance impacts. The reported magnitude of these impacts varies depending on the industry sector and expected workload characteristics. In this paper, we...
Lessons learned from a decade of providing interactive, on-demand high performance computing to scientists and engineers
Summary
Summary
For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively...
Benchmarking data analysis and machine learning applications on the Intel KNL many-core processor
Summary
Summary
Knights Landing (KNL) is the code name for the second-generation Intel Xeon Phi product family. KNL has generated significant interest in the data analysis and machine learning communities because its new many-core architecture targets both of these workloads. The KNL many-core vector processor design enables it to exploit much higher...