Publications

Refine Results

(Filters Applied) Clear All

The ITWS Runway Wind Nowcast Product

Published in:
Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 390-395.

Summary

The Runway Wind Nowcast Product will support the ITWS objective by providing short term (up to 30 minutes) forecasts of the tailwind and crosswind components of the horizontal wind over each runway at an ITWS airport. These forecasts will enable FAA users to better anticipate wind shifts impacting runway usage and trajectories of approaching and departing air traffic. They may also support future ITWS products such ceiling and visibility nowcasts. Our initial development efforts, which are reported here, have been directed toward Orlando International Airport (MCO) as the product request originated there. However, in the near future we plan to expand the scope to include other ITWS airports including Memphis. The Runway Wind Nowcast Product is being developed to help Air Traffic Control (ATC) personnel answer the following question: Do we need to change runways? That would become necessary if tailwinds or crosswinds exceed usage thresholds. At most US airports, with dry runways, tailwinds much be less than five knots and crosswinds must be less than 15 knots. Other, lower thresholds apply if the runways are wet. However, these thresholds are subject to local modifications. For example, the MCO tailwind threshold for dry runways is 7 knots. The decision faced by ATC personnel seems, at first, to be clear cut: if the tailwind or crosswind exceeds nominal thresholds, use of that runway must be discontinued. The problem (at least at MCO) is that most threshold crossings are very brief. So, it may be better to temporarily hold traffic than to switch runways. Reliable (i.e., accurate and precise) short term forecasts will help ATC personnel make better hold-or-switch decisions.
READ LESS

Summary

The Runway Wind Nowcast Product will support the ITWS objective by providing short term (up to 30 minutes) forecasts of the tailwind and crosswind components of the horizontal wind over each runway at an ITWS airport. These forecasts will enable FAA users to better anticipate wind shifts impacting runway usage...

READ MORE

Summer 1992 Terminal area-Local Analysis and Prediction System (T-LAPS) evaluation

Published in:
MIT Lincoln Laboratory Report ATC-218

Summary

The Integrated Terminal Weather System (ITWS) is a development program initiated by the Federal Administration (FAA) to produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft in flight in the terminal area. The ITWS will provide Air Traffic personnel with products that are immediately usable without further meteorological interpretation. Among the products are current terminal area weather, short-term (0-30 minute) predictions of significant weather phenomena, and the Terminal Winds product. The terminal winds product is the component of the ITWS which produces estimates of the horizontal winds on a three dimensional grid of points encompassing an airport terminal region. It uses information from a variety of sensors, including Doppler weather radars. In 1992, an operational test of an initial prototype Terminal Winds system was conducted at the MIT Lincoln Laboratory testbed in Orlando, FL. This report describes our evalution of the initial Terminal Winds prototype.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS) is a development program initiated by the Federal Administration (FAA) to produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors...

READ MORE

ITWS ceiling and visibility products

Published in:
5th Conf. on Aviation Weather Systems, 2-6 August 1993.

Summary

We present an overview of the product development strategy and discuss some of the technical considerations. It will be necessary to overcome significant scientific challenges in order to be successful. Our optimism comes from the improved operational meteorological data in the terminal area, from the ability to access and to process these data rapidly, and from ongoing advances in data assimilation for mesoscale models. Our role is to coordinate the fusion of these technical and scientific advances into operational aviation weather products and to evaluate the effectiveness of these products. Major scientific contributions are anticipated from the Forecast Systems Laboratory (FSL), the National Center for Atmospheric Research (NCAR), Pennsylvania State University, and Colorado State University.
READ LESS

Summary

We present an overview of the product development strategy and discuss some of the technical considerations. It will be necessary to overcome significant scientific challenges in order to be successful. Our optimism comes from the improved operational meteorological data in the terminal area, from the ability to access and to...

READ MORE

Showing Results

1-3 of 3