Publications
Aviation user needs for convective weather forecasts
Summary
Summary
The prediction of convective weather is very important to aviation, since almost half of the serious delay at major airports in the warm season is caused by thunderstorms. The need for accurate 0-6 hr forecasts for NAS users has been the subject of extensive publications, forums, and advisory committees in...
The growth and decay storm tracker
Summary
Summary
An elliptical filter/tracker capable of accounting for systematic growth and delay, designated the Growth and Decay Storm Tracker, has been developed and tested. Its performance depends on the size and shape of the filter, the performance of the cross-correlation tracker, the time interval between successive scans, the forecast lead time...
The Terminal Convective Weather Forecast demonstration at the DFW International Airport
Summary
Summary
The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As...
The Memphis ITWS convective forecasting collaborative demonstration
Summary
Summary
Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al...
ITWS microburst prediction algorithm performance, capabilities, and limitations
Summary
Summary
Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at...
Automated microburst wind-shear prediction
Summary
Summary
We have developed an algorithm that automatically and reliably predicts microburst wind shear. The algorithm, developed as part of the FAA Integrated Terminal Weather System (ITWS), can provide warnings several minutes in advance of hazardous low-altitude wind-shear conditions. Our approach to the algorithm emphasizes fundamental principles of thunderstorm evolution and...
A microburst prediction algorithm for the FAA Integrated Terminal Weather System
Summary
Summary
Lincoln Laboratory is developing a prototype of the Federal Aviation Administration (FAA) Integrated Terminal Weather System (ITWS) to provide improved aviation weather information in the terminal area by integrating data and products from various FAA and National Weather Service (NWS) sensors and weather information systems. The ITWS Microburst Prediction product...
MDCRS: aircraft observations collection and uses
Summary
Summary
The Meteorological Data Collection and Reporting System (MDCRS) was designed for the Federal Aviation Administration (FAA) and the National Weather Service (NWS) to collect, decode, store and disseminate aircraft meteorological observations. The system, targeted primarily at improving upper air wind forecasts, was fielded in 1991.
Dual-Doppler measurements of microburst outflow strength asymmetry
Summary
Summary
The Federal Aviation Administration (FAA) has been sponsoring Lincoln Laboratory in its effort to develop and test weather detection algorithms for the Terminal Doppler Weather Radar (TDWR). An automated microburst detection algorithm operates on the TDWR radial velocity data and, based on the shear and velocity difference along the radial...
Characteristics of thunderstorm-generated low altitude wind shear: a survey based on nationwide Terminal Doppler Weather Radar testbed measurements
Summary
Summary
The characteristics of microbursts and gust fronts, two forms of aviation-hazardous low altitude wind shear, are presented. Data were collected with a prototype terminal Doppler weather radar and a network of surface weather stations in Memphis, Huntsville, Denver, Kansas City, and Orlando. Regional differences and features that could be exploited...