Publications

Refine Results

(Filters Applied) Clear All

An emotion-driven vocal biomarker-based PTSD screening tool

Summary

This paper introduces an automated post-traumatic stress disorder (PTSD) screening tool that could potentially be used as a self-assessment or inserted into routine medical visits for PTSD diagnosis and treatment. Methods: With an emotion estimation algorithm providing arousal (excited to calm) and valence (pleasure to displeasure) levels through discourse, we select regions of the acoustic signal that are most salient for PTSD detection. Our algorithm was tested on a subset of data from the DVBIC-TBICoE TBI Study, which contains PTSD Check List Civilian (PCL-C) assessment scores. Results: Speech from low-arousal and positive-valence regions provide the best discrimination for PTSD. Our model achieved an AUC (area under the curve) equal to 0.80 in detecting PCL-C ratings, outperforming models with no emotion filtering (AUC = 0.68). Conclusions: This result suggests that emotion drives the selection of the most salient temporal regions of an audio recording for PTSD detection.
READ LESS

Summary

This paper introduces an automated post-traumatic stress disorder (PTSD) screening tool that could potentially be used as a self-assessment or inserted into routine medical visits for PTSD diagnosis and treatment. Methods: With an emotion estimation algorithm providing arousal (excited to calm) and valence (pleasure to displeasure) levels through discourse, we...

READ MORE

Airspace flow rate forecast algorithms, validation, and implementation

Summary

This report summarizes work performed by MIT Lincoln Laboratory during the period 1 February 2015 - 30 November 2015 focused on developing and improving algorithms to estimate the impact of convective weather on air traffic flows. The core motivation for the work is the need to improve strategic traffic flow management decision-making in the National Airspace System. The algorithms developed as part of this work translate multiple weather forecast products into a discrete airspace impact metric called permeability.
READ LESS

Summary

This report summarizes work performed by MIT Lincoln Laboratory during the period 1 February 2015 - 30 November 2015 focused on developing and improving algorithms to estimate the impact of convective weather on air traffic flows. The core motivation for the work is the need to improve strategic traffic flow...

READ MORE

Initial assessment of wind forecasts for Airport Acceptance Rate (AAR) and Ground Delay Program (GDP) planning

Published in:
MIT Lincoln Laboratory Report ATC-414

Summary

The planning and execution of the Airport Acceptance Rate (AAR) for major metroplex airports is a complex and critical function of traffic managers in the National Airspace System (NAS). Despite the importance of AAR planning, traffic managers currently have no widely available decision support to provide guidance for runway selection and the determination of a sustainable AAR. The AAR Decision Support Capability (AARDSC), currently under development as part of the Collaborative Air Traffic Management Technology Work Package 4 (CATMT WP4), will provide such guidance. This report provides an initial analysis of the impacts of surface winds and winds aloft on the key factors associated with the AAR (the selection of runway configuration and aircraft ground speed and spacing on final approach) and the capabilities of currently available weather forecasts to accurately predict those impacts. The report was limited in scope by the schedule and available resources, and is intended as a foundation for a comprehensive forecast assessment in follow-on work. Surface wind forecasts from the Terminal Aerodome Forecast (TAF) and numerical prediction models (the High Resolution Rapid Refresh [HRRR], Rapid Refresh [RAP] and Rapid Update Cycle [RUC], collectively described as "MODEL") were compared to observed winds gathered from METAR reports as Newark International Airport (EWR). TAF and METAR were compared for 639 days of operations from 2011-2013. MODEL forecasts and METAR were compared for 21 days of operation, 16 of which had Traffic Management Initiatives (TMI) in place to mitigate adverse weather impacts. Winds aloft were translated into several wind impact metrics. The impacts of winds aloft forecast errors were evaluated by comparing impact metrics calculated from MODEL forecasts with those calculated from analysis fields for the 21 case days. Forecasts were evaluated at horizons of 2, 4, 6, and 8 hours.
READ LESS

Summary

The planning and execution of the Airport Acceptance Rate (AAR) for major metroplex airports is a complex and critical function of traffic managers in the National Airspace System (NAS). Despite the importance of AAR planning, traffic managers currently have no widely available decision support to provide guidance for runway selection...

READ MORE

Sector workload model for benefits analysis and convective weather capacity prediction

Published in:
10th USA/Europe Air Traffic Management Research and Development Sem., ATM 2013, 10-13 June 2013.

Summary

En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because it does not account for conflicts and recurring tasks. Because of those omissions it cannot be used for accurate benefits analysis of workload-reduction initiatives, nor can it be extended to estimate capacity when hazardous weather increases the intensity of all workload types. We have previously reported on an improved model that accounts for all workload types and can be extended to handle hazardous weather. In this paper we present the results of a recent regression of that model using an extensive database of peak traffic counts for all United States en route sectors. The resulting fit quality confirms the workload basis of en route capacity. Because the model has excess degrees of freedom, the regression process returns multiple parameter combinations with nearly identical sector capacities. We analyze the impact of this ambiguity when using the model to quantify the benefits of workload reduction proposals. We also describe recent modifications to the weather-impacted version of the model to provide a more stable normalized capacity measure. We conclude with an illustration of its potential application to operational sector capacity forecasts in hazardous weather.
READ LESS

Summary

En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because...

READ MORE

Air traffic decision analysis during convective weather events in arrival airspace

Published in:
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conf. and 14th AIAA/ISSM, 17-19 September 2012.

Summary

Decision making during convective weather events in the terminal area is shared among pilots and air traffic management, where uninformed decisions can result in wide-spread cascading delays with high-level impacts. Future traffic management systems capable of predicting terminal impacts will mitigate these unnecessary delays; however in order to realize this vision, it is important to understand the decision mechanisms behind convective weather avoidance. This paper utilizes an arrival adaptation of the Convective Weather Avoidance Model (CWAM) to investigate the catalysts for arrival traffic management decision making. The analysis is broken down by category of terminal airspace structure in addition to the type of decision. The results show that pilot behavior in convective weather is heavily dependent on the terminal airspace structure. In addition, pilot and air traffic management decisions in convective weather can be discriminated with large-scale weather features.
READ LESS

Summary

Decision making during convective weather events in the terminal area is shared among pilots and air traffic management, where uninformed decisions can result in wide-spread cascading delays with high-level impacts. Future traffic management systems capable of predicting terminal impacts will mitigate these unnecessary delays; however in order to realize this...

READ MORE

Evaluation of the Convective Weather Avoidance Model for arrival traffic

Published in:
12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conf. and 14th AIAA/ISSM, 17-19 September 2012.

Summary

The effective management of traffic flows during convective weather events in congested air space requires decision support tools that can translate weather information into anticipated air traffic operational impact. In recent years, MIT Lincoln Laboratory has been maturing the Convective Weather Avoidance Model (CWAM) to correlate pilot behavior in the enroute airspace with observable weather parameters from convective weather forecast systems. This paper evaluates the adaptation of the CWAM to terminal airspace with a focus on arrival decision making. The model is trained on data from five days of terminal convective weather impacts. The performance of the model is evaluated on an independent dataset consisting of six days of convective weather over a variety of terminal areas. Model performance in different terminal areas is discussed and the sensitivity of prediction accuracy to weather forecast horizon is presented.
READ LESS

Summary

The effective management of traffic flows during convective weather events in congested air space requires decision support tools that can translate weather information into anticipated air traffic operational impact. In recent years, MIT Lincoln Laboratory has been maturing the Convective Weather Avoidance Model (CWAM) to correlate pilot behavior in the...

READ MORE

Evaluation of the Integrated Departure Route Planning (IDRP) Tool 2011 prototype

Published in:
MIT Lincoln Laboratory Report ATC-388

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype was deployed in the summer of 2010 for a very limited field evaluation. A second, more comprehensive field evaluation of the "Phase 2" IDRP prototype was performed in the summer of 2011. The key focus of IDRP is the planning and implementation of departure reroutes to avoid weather impacts and volume congestion on departure fixes and routes. This evaluation assesses three facets of the IDRP prototype critical to the successful realization of its concept of operations: 1. performance of weather impact forecasts from RAPT and departure demand forecasts from tfmCore, 2. effectiveness of reroute decisions, and 3. potential impacts on procedures and decision making based on observations of IDRP use in the field. The evaluation concludes with suggestions for future enhancements to improve the performance and realization of potential benefits in operational use of IDRP.
READ LESS

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype...

READ MORE

Evaluation of Consolidated Storm Prediction for Aviation (CoSPA) 0-8 hour convective weather forecast using the airspace flow program blockage-based capacity forecast ("The Matrix")

Published in:
MIT Lincoln Laboratory Report ATC-385

Summary

The CoSPA 0-8 hour convective weather forecast provides deterministic forecast products that can be used by strategic traffic management planners, and can be readily translated into forecasts of aviation capacity impacts for use in automated decision support tools. An operational CoSPA prototype was evaluated at several FAA Air Traffic Control facilities during the summer of 2010. As part of this evaluation, CoSPA forecasts were translated into forecasts of capacity impacts on traffic flows through two Flow Constrained Areas (FCAA05 and FCAA08) commonly used to control arrival traffic into the highly congested northeastern United States. This report describes an objective and operationally relevant evaluation of the accurancy of CoSPA-based forecasts of FCA capacity.
READ LESS

Summary

The CoSPA 0-8 hour convective weather forecast provides deterministic forecast products that can be used by strategic traffic management planners, and can be readily translated into forecasts of aviation capacity impacts for use in automated decision support tools. An operational CoSPA prototype was evaluated at several FAA Air Traffic Control...

READ MORE

Estimating the likelihood of success in departure management strategies during convective weather

Published in:
Proc. 30th IEEE/AIAA Digital Avionics Systems Conference, DASC, 16-20 October 2011, pp. 6D4.

Summary

The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights around thunderstorms that pilots wish to avoid. When the workload required to manage traffic flows becomes too great, departure routes may be closed. Departures still on the ground that are filed on closed or restricted routes may face significant delays as they wait for clearance on their filed route, or for a viable reroute to be implemented. The solution proposed in concepts such as the Integrated Departure Route Planning tool (IDRP) [1] is the use of weather and departure demand forecasts to plan and implement reroutes to avoid weather and volume congestion proactively, well in advance of route restrictions or closures.
READ LESS

Summary

The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights around...

READ MORE

Initial validation of a convective weather avoidance model (CWAM) in departure airspace

Published in:
DASC 2011, 30th IEEE/AIAA Digital Avionics Systems Conference, 16-20 October 2011, pp. 3A2.

Summary

The Convective Weather Avoidance Model (CWAM) translates gridded, deterministic weather observations and forecasts into Weather Avoidance Fields (WAF). The WAF gives the probability, at each point in the grid, that a pilot will choose to deviate around convective weather at that location. CWAM have been developed and validated for en route, high altitude, level flight, low altitude level flight, and for descending arrivals. A heuristic CWAM for departures was also developed and deployed as part of the Route Availability Planning Tool (RAPT) prototype development in New York and Chicago. This paper presents an evaluation of the departure CWAM that is currently deployed as part of RAPT, based on an analysis of departure traffic in the Chicago terminal area during convective weather events.
READ LESS

Summary

The Convective Weather Avoidance Model (CWAM) translates gridded, deterministic weather observations and forecasts into Weather Avoidance Fields (WAF). The WAF gives the probability, at each point in the grid, that a pilot will choose to deviate around convective weather at that location. CWAM have been developed and validated for en...

READ MORE