Publications

Refine Results

(Filters Applied) Clear All

Repeatable reverse engineering for the greater good with PANDA

Published in:
37th Int. Conf. on Software Engineering, 16 May 2015.

Summary

We present PANDA, an open-source tool that has been purpose-built to support whole system reverse engineering. It is built upon the QEMU whole system emulator, and so analyses have access to all code executing in the guest and all data. PANDA adds the ability to record and replay executions, enabling iterative, deep, whole system analyses. Further, the replay log files are compact and shareable, allowing for repeatable experiments. A nine billion instruction boot of FreeBSD, e.g., is represented by only a few hundred MB. Furhter, PANDA leverages QEMU's support of thirteen different CPU architectures to make analyses of those diverse instruction sets possible within the LLVM IR. In this way, PANDA can have a single dynamic taint analysis, for example, that precisely supports many CPUs. PANDA analyses are written in a simple plugin architecture which includes a mechanism to share functionality between plugins, increasing analysis code re-use and simplifying complex analysis development. We demonstrate PANDA's effectiveness via a number of use cases, including enabling an old but legitimate version of Starcraft to rund espite a lost CD key, in-depth diagnosis of an Internet Explorer crash, and uncovering the censorship activities and mechanisms of a Chinese IM client.
READ LESS

Summary

We present PANDA, an open-source tool that has been purpose-built to support whole system reverse engineering. It is built upon the QEMU whole system emulator, and so analyses have access to all code executing in the guest and all data. PANDA adds the ability to record and replay executions, enabling...

READ MORE

Architecture-independent dynamic information flow tracking

Author:
Published in:
CC 2013: 22nd Int. Conf. on Compiler Construction, 16-24 March 2013, pp. 144-163.

Summary

Dynamic information flow tracking is a well-known dynamic software analysis technique with a wide variety of applications that range from making systems more secure, to helping developers and analysts better understand the code that systems are executing. Traditionally, the fine-grained analysis capabilities that are desired for the class of these systems which operate at the binary level require tight coupling to a specific ISA. This places a heavy burden on developers of these systems since significant domain knowledge is required to support each ISA, and the ability to amortize the effort expended on one ISA implementation cannot be leveraged to support other ISAs. Further, the correctness of the system must carefully evaluated for each new ISA. In this paper, we present a general approach to information flow tracking that allows us to support multiple ISAs without mastering the intricate details of each ISA we support, and without extensive verification. Our approach leverages binary translation to an intermediate representation where we have developed detailed, architecture-neutral information flow models. To support advanced instructions that are typically implemented in C code in binary translators, we also present a combined static/dynamic analysis that allows us to accurately and automatically support these instructions. We demonstrate the utility of our system in three different application settings: enforcing information flow policies, classifying algorithms by information flow properties, and characterizing types of programs which may exhibit excessive information flow in an information flow tracking system.
READ LESS

Summary

Dynamic information flow tracking is a well-known dynamic software analysis technique with a wide variety of applications that range from making systems more secure, to helping developers and analysts better understand the code that systems are executing. Traditionally, the fine-grained analysis capabilities that are desired for the class of these...

READ MORE

Showing Results

1-2 of 2