Publications
Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and Evaluation
Summary
Summary
Time series often exhibit seasonal patterns, and identification of these patterns is essential to understanding thedata and predicting future behavior. Most methods train onlarge datasets and can fail to predict far past the training data. This limitation becomes more pronounced when data is sparse. This paper presents a method to...
Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and Evaluation
Summary
Summary
Seasonal data may display different distributions throughout the period of seasonality. We fit this type of model by determiningthe appropriate change points of the distribution and fitting parameters to each interval. This offers the added benefit of searching for disjoint regimes, which may denote the samedistribution occurring nonconsecutively. Our algorithm...