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Abstract—Time series often exhibit seasonal patterns, and
identification of these patterns is essential to understanding the
data and predicting future behavior. Most methods train on
large datasets and can fail to predict far past the training
data. This limitation becomes more pronounced when data is
sparse. This paper presents a method to fit a model to seasonal
time series data that maintains predictive power when data is
limited. This method, called SINAPSE, combines statistical model
fitting with an information criteria to search for disjoint, and
possibly nonconsecutive, regimes underlying the data, allowing
for a sparse representation resistant to overfitting.

I. INTRODUCTION

The danger of cyber threats to modern networks is grave
and growing. In 2018, 31% of organizations reported attacks
on operational technology infrastructure, and 53% of attacks
resulted in damages of $500,000 or more [1]. Recently, a
hacker exploited a configuration vulnerability in Capital One’s
firewall to gain access to credit card applications containing
a wealth of sensitive information associated with more than
100 million customers [2]. A reactive posture has proven
insufficient given the scale and persistence of cyber attacks,
necessitating a proactive approach.

A proactive approach requires an understanding of the basic
rhythms of cyber attacks. Humans drive both benign and
malicious network traffic, so both exhibit seasonality inherited
from human patterns of life [3]. For example, the timing
of phishing attacks against an enterprise network should be
coupled with the work day, when people use their work
email. However, there are likely other timing factors not so
readily apparent. The problem thus requires a means to model
seasonality while imposing minimal structure a priori.

This paper presents the Seasonal Inhomogeneous Noncon-
secutive Arrival Process Search and Evaluation (SINAPSE)
algorithm to fit piecewise constant seasonal models with min-
imal prior knowledge of the underlying structure. Piecewise
models offer several advantages over other models, including
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an explicit representation of the seasonal component, computa-
tionally inexpensive prediction, and parsimonious parameteri-
zation. Additionally, some data exhibit sharp discontinuities
rather than slow change over time. Segmenting the period
into intervals rather than treating observations individually
enables the model to identify patterns within a season with
fewer parameters and data. Critically, the intervals may be
nonconsecutive. For example, the algorithm may find a single,
common rate of cyber attack among all weeknights rather
than fitting (and potentially overfitting) a rate for each night.
The model trained by this algorithm can be used to model
seasonality, predict events, perform anomaly detection, or
serve as a baseline model to compare more sophisticated
predictive systems against.

II. LITERATURE REVIEW

A. Seasonal Modeling

Many real-world time series exhibit seasonality, or regular,
recurring patterns, and as such it is necessary to account for
them in modeling. Here, we briefly review existing methods
for modeling seasonality.

Smoothing techniques apply a set of fixed filters, or moving
averages, either to decompose the time series or to denoise it.
Common methods include the Holt–Winters model, X11-style
methods, and other variations on exponential smoothing. The
Holt–Winters method is particularly common and has been
around for almost 60 years, during which time it has been
improved by supplementary research [4]–[7].

The ARIMA (AutoRegressive Integrated Moving Average)
and related SARIMA (seasonal ARIMA) models are among
the most frequently used time series techniques for modeling
and forecasting. SARIMA models seasonality with the inclu-
sion of extra parameters for the seasonal component of the
time series. However, it can be difficult to determine the best
value for each of the many parameters, especially when the
unit of time is small.

Other models have been proposed to handle seasonality,
such as spectral analysis, which involves decomposing a time
series with cyclical components into underlying sinusoidal
functions. Nonstationary data can be studied using Fourier
analysis, but these models are very difficult to fit. Another
approach is to introduce categorical variables for the different
intervals (for example, days of the week) [8]. This decision of



how to divide the data is chosen qualitatively and may miss
variations within the interval.

Many of these models are best fit to relatively smooth data
and involve experimentation and analysis to parameterize. The
SINAPSE algorithm aims to fit a piecewise distribution to data
with minimal analyst burden.

B. Nonhomogeneous Point Processes

A point process or arrival process is a process by which
events (points) are distributed randomly through time. The
most common of these is the homogeneous Poisson process
where events occur probabilistically at a constant rate for any
fixed interval. Though such a model is elegant in its simplicity,
it often fails to capture external changes to the underlying
process, necessitating a nonhomogeneous Poisson process.
Also, though Poisson is the most common base for such
processes, other distributions can be used, such as Negative
Binomial.

In [9], the author outlines a method to model the arrival
rate as piecewise constant, and although the paper proves that
the method converges to the true solution with a continuously
varying rate parameter, the predicted rate is updated at every
data point, which creates a model as large as the training
set. [10] improves on this method by splitting the timeline
into evenly sized intervals and calculating the parameters
within each interval. As the interval size decreases and data
volume increases, it can be shown that the model converges
in the same way as [9], though at each step the model size
can be kept much smaller. Although this reduces the number
of parameters and hence chances of overfitting, convergence
requires increasing the number of parameters to the same level
as [9].

C. Changepoint Detection

As noted, human patterns of life produce discontinuities
in the behavior of the networks we are modeling. Detecting
the changepoints, the temporal boundaries between behavior
regimes, allows us to fit an appropriate model to each regime.
Here we review techniques for unsupervised detection of
changepoints in point processes. We concentrate on offline
detection, as our goal is modeling seasonal variation rather
than short-term prediction.

Kawahire & Sugiyama [11] use likelihood ratios to accept
or reject a changepoint in a tested time series. Other methods,
such as discussed in [12], assume the time series is the output
of an unknown stochastic system for which the observability
matrix both before and after the proposed changepoint can
be estimated. The distance between the subspaces spanned
by the columns is used as a discriminator for accepting
or rejecting the changepoint. Chib [13] takes a Bayesian
approach, assigning a hidden state variable to each point in
time, indicating between which changepoints that point lies,
and so identifying changes in this hidden variable identifies
the changepoint. However, the user must specify the number
of changepoints.

The above methods all require large quantities of data to
achieve statistically significant results. One possibility to allow
training on smaller datasets is to allow for nonconsecutive
intervals governed by the same set of parameters. Such work
has appeared in the literature, but with significant limitations.
Yao’s [14] detection method presupposes a system with exactly
two changepoints. Ismail & Isa [15] identifies multiple change-
points between parameter regimes but only allows for two
such regimes. All these methods also require more background
knowledge of the process underlying the time series than we
can expect to achieve for our application [16].

III. ALGORITHM

Fig. 1. Diagram of the piecewise model, as hypothesized for cyber attack
data

SINAPSE takes in observations of a time period and outputs
a piecewise arrival rate model specified by (i) an arrival
process, (ii) a set of intervals partitioning the time period, and
(iii) the parameters of the arrival process over those intervals.
A breakpoint is a changepoint in the parameters between two
intervals. A primary contribution of SINAPSE is the ability to
find breakpoints without any prior knowledge of their location
or number. An example of the hypothesized piecewise output
model for cyber attack data is shown in Fig. 1. There are
breakpoints at the start and end of each workday, as well as
a breakpoint at the start of the weekend. A regime is a set
of intervals sharing the same parameters. In Fig. 1, all the
weekdays, colored orange, are part of one regime and all of
the overnight periods, colored blue, are part of another regime.
This model repeats periodically, in this example weekly, to
model seasonality in data. The ability to link disjoint intervals
exhibiting the same behavior is another key contribution of
SINAPSE.

Fig. 2 summarizes SINAPSE. The algorithm is as follows:
1: Initialize intervals int0 (III-B) based on knowledge of

data or to homogeneous model with int0.breakpoints←
{0,m} and int0.map ← {1} where m is the number of
observations per period

2: modelbest ← None, scorebest ←∞
3: for i = 0 to num iterations do
4: Using all training data and proposed interval inti, train

the piecewise arrival model modeli as specified in III-C
5: Use the AICc as defined in III-D to compute scorei

reflecting how well modeli fits the data



Fig. 2. Diagram of the SINAPSE algorithm.

6: if scorei < scorebest then
scorebest ← scorei and modelbest ← modeli

7: end if
8: Mutate the intervals in accordance with the selected

mutation algorithm (III-E) to produce inti+1

9: end for
10: Return modelbest

A. Input Data
Occurrence times are transformed into an n × m counts

matrix, where n is the number of observation periods and m
is the number of observations per period. For an application to
w weeks of data and hourly counts, this would be a w × 168
matrix.

B. Interval Definition
The data are partitioned by breakpoints over the time period

of the season, b0, b1, ..., bn, where b0 is the minimum of
the range and bn is the maximum of the range. The n − 1
intervals between them are i0, ...., in−1, where ij = [bj , bj+1).
A minimum interval length c can be set. A regime, designated
as Rk with index k, is a collection of disjoint intervals that are
enforced to have the same parameters. The size of Rk, denoted
|Rk|, is the sum of the lengths of its constituent intervals.
Each interval must belong to exactly one regime. Regimes
allow more flexible modeling of the data to identify similar
behavior across the period as well as reducing the number of
parameters, which makes the models more compact and less
likely to overfit the training data.

C. Training the Arrival Process Model
As part of the training step, the arrival process is fit to find

a set of parameters for each regime. Many arrival processes in
the time space are not homogeneous. For example, a restaurant
is likely to have many more patrons during the time frame 6:00
PM–8:00 PM than during the time frame 2:00 AM–4:00 AM.
As such, we consider arrival processes with piecewise constant
parameters that change between regimes.

We demonstrate SINAPSE with a Poisson arrival process,
in which events occur independently at a fixed stochastic rate,
λ. The Maximum Likelihood Estimate (MLE) of the rate
parameter of a Poisson process is

λ̂k =

∑
i∈Rk

xi

|Rk|
(1)

where λ̂k is the estimate of the rate parameter for the regime
Rk and xi is the number of occurrences at time i. This is
equivalent to the average arrival rate of events in the regime.

Other arrival processes are compatible with SINAPSE such
as zero-inflated Poisson, which is used to model Poisson
processes in which some events are expected to be missed and
not recorded in the data. It has a probability mass function of

P (k = h) =

{
π + (1− π)e−λ h = 0

(1− π)e−λ λ
h

h! h ≥ 1
(2)

and the method of moments can be used to find values of π
and λ.

D. Score

The Akaike Information Criterion (AIC) is a statistic used
to evaluate models of a fixed set of data:

AIC = 2P − 2 logL(θ|X) (3)

where P is the number of parameters in the model and L(θ|X)
is the likelihood of the model given the data. Minimizing
the AIC encourages parsimony as well as quality of fit by
penalizing the number of parameters used to fit the model.
The AIC is biased when the data set is small, generally when
n
P < 40, where n is the number of data points. The bias-
corrected AIC, notated AICc, adds the term: 2P (P+1)

n−P−1 to the
AIC.

The number of parameters is defined as the number of
variables required to uniquely define a model within its model
class. For our purposes, P is the number of intervals, plus
the product of the number of regimes and the number of pa-
rameters per regime. P = countintervals + countregimes ∗ m
where countintervals is the number of intervals, countregimes
is the number of regimes, and m is the number of parameters
used in each regime, which varies between model classes.
This “discounts” the addition of a new interval if it is to an
existing regime. For the SINAPSE algorithm, the AICc may
be modified slightly to include a penalty parameter, which is
a weight the user may set on the parameter term of the AICc
to encourage either fewer or more breakpoints in the model.
This may be useful if the user wants a simpler model, but
decreasing the penalty is not recommended as it may result in
overfitting.

E. Mutation

Intervals can be mutated in one of four ways with examples
shown in Fig. 3.

Split an interval by randomly adding a new breakpoint. For
the interval im = [bm, bm+1), if a breakpoint b were added,
then the interval im is split into two: i′m = [bm, b) and i′m+1 =
[b, bm+1). The new i′m belongs to the regime of the pre-split
im; the new i′m+1 forms a new regime.

Merge two distinct intervals by randomly selecting them
and adding the second to the regime of the first. If the intervals
were consecutive, remove the breakpoint between them.



Fig. 3. Examples of each type of mutation

Increment. To increment by inc, select a breakpoint bm
(besides the final one). Increment by changing the value of
bm to bm + inc.

Decrement. To decrement by dec, select a breakpoint bm
(besides the first one). Decrement by changing the value of
bm to bm − dec.

F. Mutation Choice

We use a genetic algorithm [17] to choose mutations at each
step. The algorithm begins by randomly generating a number,
n, of interval partitions that collectively form a population.
The models resulting from each interval partition are compared
using a measure of fit. The least fit partitions are discarded,
and the best partitions are chosen by tournament selection to
be crossed and mutated with a probability, p, to form the next
generation. Crossover is achieved by randomly switching two
partitions’ breakpoints. Mutation is as described in Section
III-E.

Simulated annealing was also considered as a mutation
algorithm, but was found to fit models with a higher root mean
square error (RMSE) and higher variance of error.

The algorithm stops after a specified number of generations,
returning the model with the best fitness value. For all datasets
discussed in this paper, 100 generations was sufficient, as
represented in Fig. 4.

IV. RESULTS

A. Simulated Data

To validate the SINAPSE algorithm, data were simulated
from a piecewise Poisson distribution. Dataset 1 contains
three regimes with low values of λ. Dataset 2 contains the
same regimes but with higher λ. Dataset 3 contains only one
breakpoint. Dataset 4 contains many breakpoints. Summaries
of the models and parameters data were synthesized from
can be found in Table III at the end of the document. These
intervals are shown in Fig. 5.

Each model was trained using an initial interval hypothesis
of a homogeneous Poisson process (one regime). The genetic
algorithm was used with 100 generations of population size

Fig. 4. A variety of datasets (simulated, Enron, and cyber data from the
results section) with score levelling off around 100 generations. Errors are
normalized.

Fig. 5. True underlying intervals and model for each simulated dataset

100. The mutation and crossover probabilities are 0.5. The
minimum interval length is 4. There is no additional penalty
factor. These standard parameters were found to work well in
a variety of conditions and are set as defaults.

1) Evaluation on Datasets 1–4: The error metric used to
evaluate the performance is

e =

√∑t
i=0(λ(i)− λ̂(i))2∑t

i=0 λ(i)
(4)

where the denominator serves as a normalization factor. This
is proportional to the normalized RMSE between the trained
model and the known true model. To evaluate the performance
on the algorithm in a variety of conditions, a model was fit
using SINAPSE 100 times for each dataset and the error for
each was computed using (4).

Table I presents statistics on the errors on simulated data.
Overall, the training error is low for all models with a
similarly small range of error over 100 iterations. Comparing
Dataset 1 and Dataset 2 demonstrates a greater average error
but lesser variance when λ is greater. This is because an
incorrect breakpoint placement causes proportionally higher
error, and having more underlying observations in the data

TABLE I
STATISTICS FOR ERROR OF SIMULATED DATA

Dataset Mean Error Error Std. Error Range

1 .005 .005 .015
2 .012 .001 .003
3 .002 .002 .007
4 .029 .004 .025



results in stronger evidence for a smaller set of models.
Comparing Dataset 3 and Dataset 4 shows lower error and
lower standard deviation in error when there are fewer
breakpoints. This is also anticipated as there is more variety
in the data in Dataset 4. There are more opportunities to
mis-estimate breakpoints, resulting in a higher error.

2) Aggregate Performance: To simulate a variety of condi-
tions, 20 weeks of testing data were generated with between
5 and 14 randomly selected breakpoints separated by at least
4 hours each. Each interval was randomly assigned a regime,
and each regime used a rate parameter drawn from a uniform
distribution on [0, 2]. This was repeated for 100 parameter
sets. As can be seen from Fig. 6, SINAPSE consistently finds
a model that is close to the true underlying distribution. A ho-
mogeneous Poisson model was also trained as a baseline with
mean scores, determined by (4), also plotted for comparison.

Fig. 6. SINAPSE trained algorithms are closer to ground truth than homo-
geneous Poisson models.

B. Enron Email Data

We also tested the SINAPSE algorithm on the Enron
email dataset, available at https://www.cs.cmu.edu/∼enron/.
It contains more than 600,000 emails over about two years.
Timestamps following the phrase “Date:” were collected from
every email between 1 January 2000 and 1 September 2000
and converted to PST. We trimmed the data to start and end
on a Monday at midnight. There are 83,471 events (emails)
during this nine-month period. This data is converted into an
array of shape 34 (weeks in the dataset) × 168 (hours per
week) containing the count of emails for each hour of each
week.

Notably, the data are not stationary. Despite attempts to
logarithmically transform data, smooth by n of less than 100
hours, difference, or subtract the linear trend, they fail the
Augmented Dickey–Fuller test with a p-value less than 10−15.
There is an upward trend over the course of the dataset as well
as seasonality. The upward trend is statistically significant with
a coefficient of .0026 and a p-value less than 10−15.

The model is trained using a minimum interval size of four
hours, a Poisson model, and the genetic algorithm. The result-
ing weekly pattern is shown in Fig. 7. The model demonstrates

a roughly constant rate for 12 hours each weekday during the
working day and a lower rate over nights, with even lower rates
over weekends. The significant drop during lunch hours on
workdays is not modeled as the minimum interval constraint
was four hours. If more or less specificity is desired, the
sensitivity can be tuned by changing the penalty parameter.
Increasing the penalty parameter results in a smoother model
with three regimes, one for weekdays, one for overnight,
and one for weekends. This model is easier to store and
corresponds to states within the week.

Fig. 7. Weekly rates for Enron email dataset aggregated over all weeks,
compared to SINAPSE model.

1) Comparison to SARIMA Model: A SARIMA model is
trained to compare SINAPSE to a traditional seasonal time
series model. We used a SARIMA model with p = 1, q = 1,
P = 1, and S = 168 to allow similar seasonal modeling
over the prediction time period. The training RMSE of the
SARIMA model was 12.14.

Because there is an increase in trend over the Enron data
and SINAPSE only models seasonality, the SINAPSE model
is combined with a linear trend. In the Enron dataset, the
increase in model parameters is not proportionally linear:
though there is an increase over time, the difference between
the highs and lows, or days and nights, does not remain the
same. Therefore, the SINAPSE-fit model is multiplied by a
log increase per week. A linear model is fit on the log count
of weekly emails, resulting in the trend 7.23+.032x, where
x is the number of weeks from the beginning of the dataset.
This adjustment accounts for upward trend and seasonality in
the data. The training RMSE of the adjusted SINAPSE model
was 12.01, which is very similar but slightly lower than that
of the SARIMA model.

To compare the predictive power of the SARIMA model
and the SINAPSE model, we also look one week past the
end of the training data and compare the RMSE of both with
the actual data. Both models were trained on data between
3 January, 2000 and 28 August, 2000. Data for the week of
28 August, 2000 to 4 September, 2000 are processed in the
same way as the original data were. The predictions of the
SINAPSE model adjusted for trend had an RMSE of 19.86,
as compared to the predictions of the SARIMA model, which
had an RMSE of 26.86, as seen in Table II. A visualization
of both models’ predictions as compared to the true values is
shown in Fig. 8.



TABLE II
COMPARISON OF RMSE FOR SARIMA AS COMPARED TO SINAPSE

MODELS ON ENRON DATASET

Model Training RMSE Prediction RMSE
SINAPSE 12.01 19.86
SARIMA 12.14 26.86

The SINAPSE model, adjusted for trend, fits the data as well
as the SARIMA model does and outperforms it for prediction.

Fig. 8. Comparison of SARIMA and SINAPSE model predictions one week
ahead on Enron dataset.

2) Anomaly Detection: As with many time series models,
the model found by the SINAPSE algorithm can be used for
anomaly detection, a utility with a broad range of applications.
For cybersecurity in particular, there is demand for anomaly
detection applied to network intrusion that could identify zero-
day attacks. [18], [19], [20]. A variety of network traffic
patterns could be modeled to detect unusual behavior on
a network based on typical behavior during a week. An
anomaly in the count of unique connections from a single
host could indicate a port scan, a spike in packet size from a
specific host could indicate data exfiltration, or activity at an
unusual time could indicate an insider threat. An example of
seasonal behavior that could be modeled to identify anomalies
is the count of emails over the week. Monitoring emails for
anomalies is important as it is the most common vector for
cybersecurity incidents, with 96% of all incidents involving
phishing [21]. Fig. 9 demonstrates the first six weeks of the
Enron data overlaid with the weekly model, adjusted for trend.
A test or metric needs to be decided upon to determine whether
behavior is considered anomalous. An example of bounds for
normal behavior is x̄i± c ∗σi, where x̄i is the model’s hourly
rate on the interval i, c is some constant multiplier (set to
5 here), and σi is the standard deviation on interval i. If
a data point occurs outside this range, it is determined to
be anomalous. This can be improved by taking the moving
average over three data points to smooth behavior near change
points. Note in the context of email counts the value cannot
be negative, but for other data this may be valid. The normal
bounds should be determined in a way that is applicable to
the data. In Fig. 9, the gray bounds define normal behavior
and red dots highlight anomalies that occur outside that range.

During that six week period, three anomalies were identified.
By returning to the Enron emails it was validated that each
spike was due to one individual behaving in an anomalous way.
The first anomaly was due to congratulatory promotion emails
and the next two were due to unusual weekend work. These
anomalies did correspond to unusual behavior, which suggests
promise for application as an anomaly detection algorithm.

C. Cyber Attack Data

The SINAPSE algorithm was also applied to cyber datasets.
The first dataset contains timestamps of cyber attacks that
occurred at an anonymous organization. The dataset spans
from 1 July, 2017 to 31 December, 2018 and contains 506
cyber attacks. Occurrence times are converted into an array
with dimensions 66 (weeks in the dataset) by 168 (hours per
week), containing the count of events per hour. Given the
sparsity of this dataset, it can be used to demonstrate how
SINAPSE handles sparse seasonal data. As it is not always
clear what constitutes a cyber event, and it is unlikely that
any process will record every event, we used a zero-inflated
Poisson model for this dataset. Fig. 10 shows the results of
training. As can be seen, the model predicts high arrival rates
during working hours that drops off every night. As the week
progresses, the rate falls to an overall low over the weekend.
This identified pattern mirrors an expected pattern of life for
most 9–5 employees; there should be more activity during
working hours, less at night, and the least on weekends.

V. DISCUSSION

A. Summary

The SINAPSE algorithm presents a novel method to train a
nonhomogenous point process model for seasonal time series
data. Although the literature outlines many methods to train
similar models, they tend to either require domain knowledge
and a significant time investment to set hyperparameters of
the training process or overfit the training data. The genetic
algorithm allows for efficient search of the parameter space,
and because of its use of the AIC, SINAPSE can find a balance
between the number of parameters and fidelity of the model
to the training data. The ability to recognize nonconsecutive
intervals governed by the same set of parameters allows fitting
models on sparse data or models with underlying “states”.
This could be used to direct further investigation, such as if
two intervals are identified as belonging to a common regime,
there may be an underlying factor causing the similarity.
The primary strength of this method is that it achieves high
accuracy with minimal data and background knowledge. The
only hyperparameters to be set are a penalty term, which can
be increased to make the model more sparse, and the minimum
interval, which can be determined based on modeling goals.
These factors taken together make it highly effective on a
broad range of datasets from simulated data, to high-volume
email data, to sparse cyber incident data, all of which display
seasonality and sharp changepoints.



Fig. 9. Example of usage of SINAPSE for anomaly detection.

Fig. 10. Cyber event data aggregated weekly and overlaid with SINAPSE
model.

B. Use Cases/Specifications

The SINAPSE algorithm fits a piecewise model over a
period with suspected seasonality. In order to fit this model,
that period must be fixed and known. This can be weekly,
monthly, yearly, etc., but must be a period with unchanging
length over time. This type of model is useful when there are
sharp change points, such as the start and end of a workday,
rather than gradual, continuous changes in the data, such as
with monthly weather temperatures. It is useful when there
are a large number of observation cycles in the length of the
period. Monthly data within a year are too infrequent, as there
are too few possible divisions of the twelve months in a year.

The algorithm currently is not designed to be used as
an online algorithm. The search process for breakpoints is
comprehensive and would be expensive to perform on every
ingest of new data points. New data points could be used to
recompute the parameters of the regime with a refitting after
each season instance, but this requires storage of past data.

Additionally, there are some limitations with the choice of
the genetic algorithm, as it is nondeterministic. The genetic
algorithm is also susceptible to getting stuck in local minima,
though this can be mitigated by increasing the mutation rate.

The model also only accounts for seasonality over the
specified period. If there is an additional trend or known
outliers like holidays, then it is necessary to combine the
effects of each component.

VI. FUTURE WORK

Genetic algorithms, though often effective, are rarely the
best way to approach an optimization problem. For example, a

possible improvement may include by treating each mutation
listed above as a “move” in a game scored by the AIC or
applying a low-pass filter to the data before training and
searching over the regime space.

A further direction to take this analysis would be to con-
sider modeling multidimensional time series data. This would
greatly broaden the application domain and allow for more
powerful models that consider interactions between multiple
measurements at each time.

As mentioned above, we currently only account for strict
seasonality and cannot model exceptions or trend. As such,
an important direction for future work would be to combine
SINAPSE with other forms of seasonality or trending over
time. [22] proposes modeling different types of variation and
combining them multiplicatively using a Bayesian Markov
Chain Monte Carlo estimation algorithm, which is a promising
direction for future work.
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APPENDIX

TABLE III
MODELS WE USED TO GENERATE SYNTHETIC DATA

Dataset # Samples Breakpoints Interval
Map

Parameters

1 50 [0, 20, 25,
46, 50]

[λ1, λ2, λ1,
λ3]

λ1=.2,
λ2=1,
λ3=.4

2 50 [0, 20, 25,
46, 50]

[λ1, λ2, λ1,
λ3]

λ1=2,
λ2=10,
λ3=4

3 50 [0, 35, 50] [λ1, λ2] λ1=.8,
λ2=1.4

4 50 [0, 6, 16,
20, 27, 32,
38, 42, 50]

[λ1, λ2, λ3,
λ4, λ2, λ1,
λ5, λ6]

λ1=.8,
λ2=1.4,
λ3=.2,
λ4=2.5,
λ5=2, λ6=4


