Publications
The mixer and transcript reading corpora: resources for multilingual, crosschannel speaker recognition research
Summary
Summary
This paper describes the planning and creation of the Mixer and Transcript Reading corpora, their properties and yields, and reports on the lessons learned during their development.
Combining cross-stream and time dimensions in phonetic speaker recognition
Summary
Summary
Recent studies show that phonetic sequences from multiple languages can provide effective features for speaker recognition. So far, only pronunciation dynamics in the time dimension, i.e., n-gram modeling on each of the phone sequences, have been examined. In the JHU 2002 Summer Workshop, we explored modeling the statistical pronunciation dynamics...
Phonetic speaker recognition using maximum-likelihood binary-decision tree models
Summary
Summary
Recent work in phonetic speaker recognition has shown that modeling phone sequences using n-grams is a viable and effective approach to speaker recognition, primarily aiming at capturing speaker-dependent pronunciation and also word usage. This paper describes a method involving binary-tree-structured statistical models for extending the phonetic context beyond that of...
The SuperSID project : exploiting high-level information for high-accuracy speaker recognition
Summary
Summary
The area of automatic speaker recognition has been dominated by systems using only short-term, low-level acoustic information, such as cepstral features. While these systems have indeed produced very low error rates, they ignore other levels of information beyond low-level acoustics that convey speaker information. Recently published work has shown examples...
Gender-dependent phonetic refraction for speaker recognition
Summary
Summary
This paper describes improvement to an innovative high-performance speaker recognition system. Recent experiments showed that with sufficient training data phone strings from multiple languages are exceptional features for speaker recognition. The prototype phonetic speaker recognition system used phone sequences from six languages to produce an equal error rate of 11.5%...