Publications
The application of statistical relational learning to a database of criminal and terrorist activity
Summary
Summary
We apply statistical relational learning to a database of criminal and terrorist activity to predict attributes and event outcomes. The database stems from a collection of news articles and court records which are carefully annotated with a variety of variables, including categorical and continuous fields. Manual analysis of this data...
Detection and simulation of scenarios with hidden Markov models and event dependency graphs
Summary
Summary
The wide availability of signal processing and language tools to extract structured data from raw content has created a new opportunity for the processing of structured signals. In this work, we explore models for the simulation and recognition of scenarios - i.e., time sequences of structured data. For simulation, we...
The MIT-LL/AFRL IWSLT-2008 MT System
Summary
Summary
This paper describes the MIT-LL/AFRL statistical MT system and the improvements that were developed during the IWSLT 2008 evaluation campaign. As part of these efforts, we experimented with a number of extensions to the standard phrase-based model that improve performance for both text and speech-based translation on Chinese and Arabic...
Modeling and detection techniques for counter-terror social network analysis and intent recognition
Summary
Summary
In this paper, we describe our approach and initial results on modeling, detection, and tracking of terrorist groups and their intents based on multimedia data. While research on automated information extraction from multimedia data has yielded significant progress in areas such as the extraction of entities, links, and events, less...
The MIT-LL/AFRL IWSLT-2007 MT System
Summary
Summary
The MIT-LL/AFRL MT system implements a standard phrase-based, statistical translation model. It incorporates a number of extensions that improve performance for speech-based translation. During this evaluation our efforts focused on the rapid porting of our SMT system to a new language (Arabic) and novel approaches to translation from speech input...
An efficient graph search decoder for phrase-based statistical machine translation
Summary
Summary
In this paper we describe an efficient implementation of a graph search algorithm for phrase-based statistical machine translation. Our goal was to create a decoder that could be used for both our research system and a real-time speech-to-speech machine translation demonstration system. The search algorithm is based on a Viterbi...
The MIT-LL/AFRL IWSLT-2006 MT system
Summary
Summary
The MIT-LL/AFRL MT system is a statistical phrase-based translation system that implements many modern SMT training and decoding techniques. Our system was designed with the long-term goal of dealing with corrupted ASR input and limited amounts of training data for speech-to-speech MT applications. This paper will discuss the architecture of...
Toward an interagency language roundtable based assessment of speech-to-speech translation capabilitites
Summary
Summary
We present observations from three exercises designed to map the effective listening and speaking skills of an operator of a speech-to-speech translation system (S2S) to the Interagency Language Roundtable (ILR) scale. Such a mapping is nontrivial, but will be useful for government and military decision makers in managing expectations of...
The MIT-LL/AFRL MT System
Summary
Summary
The MITLL/AFRL MT system is a statistical phrase-based translation system that implements many modern SMT training and decoding techniques. Our system was designed with the long term goal of dealing with corrupted ASR input for Speech-to-Speech MT applications. This paper will discuss the architecture of the MITLL/AFRL MT system, and...