Publications
Advances in channel compensation for SVM speaker recognition
January 1, 2005
Conference Paper
Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, Vol. 1, 19-23 March 2005, pp. I-629 - I-631.
Topic:
R&D area:
Summary
Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study the problem for speaker recognition using support vector machines (SVMs). We perform channel compensation in SVM modeling by removing non-speaker nuisance dimensions in the SVM expansion space via projections. Training to remove these dimensions is accomplished via an eigenvalue problem. The eigenvalue problem attempts to reduce multisession variation for the same speaker, reduce different channel effects, and increase "distance" between different speakers. We apply our methods to a subset of the Switchboard 2 corpus. Experiments show dramatic improvement in performance for the cross-channel case.
Summary
Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study the problem for speaker recognition using support vector machines (SVMs). We perform channel compensation in SVM modeling by removing non-speaker nuisance dimensions in the SVM expansion space via projections. Training to remove these dimensions is accomplished...
READ MORE