Publications
Nuisance attribute projection
Summary
Summary
Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study this problem in the support vector machine (SVM) context and nuisance variable compensation in high-dimensional spaces more generally. We present an approach to nuisance variable compensation by removing nuisance attribute-related dimensions in the SVM expansion space...
SVM based speaker verification using a GMM supervector kernel and NAP variability compensation
Summary
Summary
Gaussian mixture models with universal backgrounds (UBMs) have become the standard method for speaker recognition. Typically, a speaker model is constructed by MAP adaptation of the means of the UBM. A GMM supervector is constructed by stacking the means of the adapted mixture components. A recent discovery is that latent...
Advances in channel compensation for SVM speaker recognition
Summary
Summary
Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study the problem for speaker recognition using support vector machines (SVMs). We perform channel compensation in SVM modeling by removing non-speaker nuisance dimensions in the SVM expansion space via projections. Training to remove these dimensions is accomplished...
Channel compensation for SVM speaker recognition
Summary
Summary
One of the major remaining challenges to improving accuracy in state-of-the-art speaker recognition algorithms is reducing the impact of channel and handset variations on system performance. For Gaussian Mixture Model based speaker recognition systems, a variety of channel-adaptation techniques are known and available for adapting models between different channel conditions...