Publications

Refine Results

(Filters Applied) Clear All

Polyphase nonlinear equalization of time-interleaved analog-to-digital converters

Published in:
IEEE J. Sel. Top. Sig. Process., Vol. 3, No. 3, June 2009, pp. 362-373.

Summary

As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with interleaving multiple output streams. To mitigate distortion generated by time-interleaved ADCs, we have developed a polyphase NonLinear EQualizer (pNLEQ) which is capable of simultaneously mitigating distortion generated by both the on-chip circuitry and mismatches due to time interleaving. In this paper, we describe the pNLEQ architecture and present measurements of its performance.
READ LESS

Summary

As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with...

READ MORE

Variable projection and unfolding in compressed sensing

Published in:
Proc. 14th IEEE/SP Workshop on Statistical Signal Processing, 26-28 August 2007, pp. 358-362.

Summary

The performance of linear programming techniques that are applied in the signal identification and reconstruction process in compressed sensing (CS) is governed by both the number of measurements taken and the number of nonzero coefficients in the discrete basis used to represent the signal. To enhance the capabilities of CS, we have developed a technique called Variable Projection and Unfolding (VPU). VPU extends the identification and reconstruction capability of linear programming techniques to signals with a much greater number of nonzero coefficients in the basis in which the signals are compressible with significantly better reconstruction error.
READ LESS

Summary

The performance of linear programming techniques that are applied in the signal identification and reconstruction process in compressed sensing (CS) is governed by both the number of measurements taken and the number of nonzero coefficients in the discrete basis used to represent the signal. To enhance the capabilities of CS...

READ MORE

A new approach to achieving high-performance power amplifier linearization

Published in:
IEEE Radar Conf., 17-20 April 2007. doi: 10.1109/RADAR.2007.374329

Summary

Digital baseband predistortion (DBP) is not particularly well suited to linearizing wideband power amplifiers (PAs); this is due to the exorbitant price paid in computational complexity. One of the underlying reasons for the computational complexity of DBP is the inherent inefficiency of using a sufficiently deep memory and a high enough polynomial order to span the multidimensional signal space needed to mitigate PA-induced nonlinear distortion. Therefore we have developed a new mathematical method to efficiently search for and localize those regions in the multidimensional signal space that enable us to invert PA nonlinearities with a significant reduction in computational complexity. Using a wideband code division multiple access (CDMA) signal we demonstrate and compare the PA linearization performance and computational complexity of our algorithm to that of conventional DBP techniques using measured results.
READ LESS

Summary

Digital baseband predistortion (DBP) is not particularly well suited to linearizing wideband power amplifiers (PAs); this is due to the exorbitant price paid in computational complexity. One of the underlying reasons for the computational complexity of DBP is the inherent inefficiency of using a sufficiently deep memory and a high...

READ MORE

Showing Results

1-3 of 3