Publications

Refine Results

(Filters Applied) Clear All

Efficient reconstruction of block-sparse signals

Published in:
IEEE Statistical Signal Processing Workshop, 28-30 June 2011.

Summary

In many sparse reconstruction problems, M observations are used to estimate K components in an N dimensional basis, where N > M ¿ K. The exact basis vectors, however, are not known a priori and must be chosen from an M x N matrix. Such underdetermined problems can be solved using an l2 optimization with an l1 penalty on the sparsity of the solution. There are practical applications in which multiple measurements can be grouped together, so that K x P data must be estimated from M x P observations, where the l1 sparsity penalty is taken with respect to the vector formed using the l2 norms of the rows of the data matrix. In this paper we develop a computationally efficient block partitioned homotopy method for reconstructing K x P data from M x P observations using a grouped sparsity constraint, and compare its performance to other block reconstruction algorithms.
READ LESS

Summary

In many sparse reconstruction problems, M observations are used to estimate K components in an N dimensional basis, where N > M ¿ K. The exact basis vectors, however, are not known a priori and must be chosen from an M x N matrix. Such underdetermined problems can be solved...

READ MORE

Identification and compensation of Wiener-Hammerstein systems with feedback

Published in:
ICASSP 2011, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 22-27 May 2011, pp. 4056-4059.

Summary

Efficient operation of RF power amplifiers requires compensation strategies to mitigate nonlinear behavior. As bandwidth increases, memory effects become more pronounced, and Volterra series based compensation becomes onerous due to the exponential growth in the number of necessary coefficients. Behavioral models such as Wiener-Hammerstein systems with a parallel feedforward or feedback filter are more tractable but more difficult to identify. In this paper, we extend a Wiener-Hammerstein identification method to such systems showing that identification is possible (up to inherent model ambiguities) from single- and two-tone measurements. We also calculate the Cramer-Rao bound for the system parameters and compare to our identification method in simulation. Finally, we demonstrate equalization performance using measured data from a wideband GaN power amplifier.
READ LESS

Summary

Efficient operation of RF power amplifiers requires compensation strategies to mitigate nonlinear behavior. As bandwidth increases, memory effects become more pronounced, and Volterra series based compensation becomes onerous due to the exponential growth in the number of necessary coefficients. Behavioral models such as Wiener-Hammerstein systems with a parallel feedforward or...

READ MORE

Physical layer considerations for wideband cognitive radio

Published in:
MILCOM 2010, IEEE Military Communications Conference , 31 October-3 November 2010, pp. 2113-2118.

Summary

Next generation cognitive radios will benefit from the capability of transmitting and receiving communications waveforms across many disjoint frequency channels spanning hundreds of megahertz of bandwidth. The information theoretic advantages of multi-channel operation for cognitive radio (CR), however, come at the expense of stringent linearity requirements on the analog transmit and receive hardware. This paper presents the quantitative advantages of multi-channel operation for next generation CR, and the advanced digital compensation algorithms to mitigate transmit and receive nonlinearities that enable broadband multi-channel operation. Laboratory measurements of the improvement in the performance of a multi-channel CR communications system operating below 2 GHz in over 500 MHz of instantaneous bandwidth are presented.
READ LESS

Summary

Next generation cognitive radios will benefit from the capability of transmitting and receiving communications waveforms across many disjoint frequency channels spanning hundreds of megahertz of bandwidth. The information theoretic advantages of multi-channel operation for cognitive radio (CR), however, come at the expense of stringent linearity requirements on the analog transmit...

READ MORE

A multi-sensor compressed sensing receiver: performance bounds and simulated results

Published in:
43rd Asilomar Conf. on Signals, Systems, and Computers, 1-4 November 2009, pp. 1571-1575.

Summary

Multi-sensor receivers are commonly tasked with detecting, demodulating and geolocating target emitters over very wide frequency bands. Compressed sensing can be applied to persistently monitor a wide bandwidth, given that the received signal can be represented using a small number of coefficients in some basis. In this paper we present a multi-sensor compressive sensing receiver that is capable of reconstructing frequency-sparse signals using block reconstruction techniques in a sensor-frequency basis. We derive performance bounds for time-difference and angle of arrival (AoA) estimation of such a receiver, and present simulated results in which we compare AoA reconstruction performance to the bounds derived.
READ LESS

Summary

Multi-sensor receivers are commonly tasked with detecting, demodulating and geolocating target emitters over very wide frequency bands. Compressed sensing can be applied to persistently monitor a wide bandwidth, given that the received signal can be represented using a small number of coefficients in some basis. In this paper we present...

READ MORE

A log-frequency approach to the identification of the Wiener-Hammerstein model

Published in:
IEEE Sig. Proc. Lett., Vol. 16, No. 10, October 2009, pp. 889-892.

Summary

In this paper we present a simple closed-form solution to the Wiener-Hammerstein (W-H) identification problem. The identification process occurs in the log-frequency domain where magnitudes and phases are separable. We show that the theoretically optimal W-H identification is unique up to an amplitude, phase and delay ambiguity, and that the nonlinearity enables the separate identification of the individual linear time invariant (LTI) components in a W-H architecture.
READ LESS

Summary

In this paper we present a simple closed-form solution to the Wiener-Hammerstein (W-H) identification problem. The identification process occurs in the log-frequency domain where magnitudes and phases are separable. We show that the theoretically optimal W-H identification is unique up to an amplitude, phase and delay ambiguity, and that the...

READ MORE

Compressed sensing arrays for frequency-sparse signal detection and geolocation

Published in:
Proc. of the 2009 DoD High Performance Computing Modernization Program Users Group Conf., HPCMP-UGC, 15 June 2009, pp. 297-301.

Summary

Compressed sensing (CS) can be used to monitor very wide bands when the received signals are sparse in some basis. We have developed a compressed sensing receiver architecture with the ability to detect, demodulate, and geolocate signals that are sparse in frequency. In this paper, we evaluate detection, reconstruction, and angle of arrival (AoA) estimation via Monte Carlo simulation and find that, using a linear 4- sensor array and undersampling by a factor of 8, we achieve near-perfect detection when the received signals occupy up to 5% of the bandwidth being monitored and have an SNR of 20 dB or higher. The signals in our band of interest include frequency-hopping signals detected due to consistent AoA. We compare CS array performance using sensor-frequency and space-frequency bases, and determine that using the sensor-frequency basis is more practical for monitoring wide bands. Though it requires that the received signals be sparse in frequency, the sensor-frequency basis still provides spatial information and is not affected by correlation between uncompressed basis vectors.
READ LESS

Summary

Compressed sensing (CS) can be used to monitor very wide bands when the received signals are sparse in some basis. We have developed a compressed sensing receiver architecture with the ability to detect, demodulate, and geolocate signals that are sparse in frequency. In this paper, we evaluate detection, reconstruction, and...

READ MORE

Polyphase nonlinear equalization of time-interleaved analog-to-digital converters

Published in:
IEEE J. Sel. Top. Sig. Process., Vol. 3, No. 3, June 2009, pp. 362-373.

Summary

As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with interleaving multiple output streams. To mitigate distortion generated by time-interleaved ADCs, we have developed a polyphase NonLinear EQualizer (pNLEQ) which is capable of simultaneously mitigating distortion generated by both the on-chip circuitry and mismatches due to time interleaving. In this paper, we describe the pNLEQ architecture and present measurements of its performance.
READ LESS

Summary

As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with...

READ MORE

Extending the dynamic range of RF receivers using nonlinear equalization

Summary

Systems currently being developed to operate across wide bandwidths with high sensitivity requirements are limited by the inherent dynamic range of a receiver's analog and mixed-signal components. To increase a receiver's overall linearity, we have developed a digital NonLinear EQualization (NLEQ) processor which is capable of extending a receiver's dynamic range from one to three orders of magnitude. In this paper we describe the NLEQ architecture and present measurements of its performance.
READ LESS

Summary

Systems currently being developed to operate across wide bandwidths with high sensitivity requirements are limited by the inherent dynamic range of a receiver's analog and mixed-signal components. To increase a receiver's overall linearity, we have developed a digital NonLinear EQualization (NLEQ) processor which is capable of extending a receiver's dynamic...

READ MORE

A polyphase nonlinear equalization architecture and semi-blind identification method

Published in:
42th Asilomar Conf. on Signals, Systems, and Computers, 27 October 2008, pp. 593-597.

Summary

In this paper, we present an architecture and semiblind identification method for a polyphase nonlinear equalizer (pNLEQ). Such an equalizer is useful for extending the dynamic range of time-interleaved analog-to-digital converters (ADCs). Our proposed architecture is a polyphase extension to other architectures that partition the Volterra kernel into small nonlinear filters with relatively low computational complexity. Our semi-blind identification technique addresses important practical concerns in the equalizer identification process. We describe our architecture and demonstrate its performance with measured results when applied to a National Semiconductor ADC081000.
READ LESS

Summary

In this paper, we present an architecture and semiblind identification method for a polyphase nonlinear equalizer (pNLEQ). Such an equalizer is useful for extending the dynamic range of time-interleaved analog-to-digital converters (ADCs). Our proposed architecture is a polyphase extension to other architectures that partition the Volterra kernel into small nonlinear...

READ MORE

The cube coefficient subspace architecture for nonlinear digital predistortion

Published in:
42th Asilomar Conf. on Signals, Systems, and Computers, 27 October 2008, pp. 1857-1861.

Summary

In this paper, we present the cube coefficient subspace (CCS) architecture for linearizing power amplifiers (PAs), which divides the overparametrized Volterra kernel into small, computationally efficient subkernels spanning only the portions of the full multidimensional coefficient space with the greatest impact on linearization. Using measured results from a Q-Band solid state PA, we demonstrate that the CCS predistorter architecture achieves better linearization performance than state-of-the-art memory polynomials and generalized memory polynomials.
READ LESS

Summary

In this paper, we present the cube coefficient subspace (CCS) architecture for linearizing power amplifiers (PAs), which divides the overparametrized Volterra kernel into small, computationally efficient subkernels spanning only the portions of the full multidimensional coefficient space with the greatest impact on linearization. Using measured results from a Q-Band solid...

READ MORE

Showing Results

1-10 of 15