Publications
The FAA Terminal Doppler Weather (TDWR) Program
February 3, 1989
Conference Paper
Published in:
Proc. Third Int. Conf. on the Aviation Weather Systems, 30 January - 3 February 1989, pp. 414-419.
Topic:
R&D area:
R&D group:
Summary
The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980s in response to overwhelming scientific evidence that low-altitude wind shear had caused a number of major air-carrier accidents. The program is designed to develop a reliable automated system for detecting low-altitude wind shear in the terminal area and providing warnings that will help pilots successfully avoid it on approach and departure. Wind shear has caused more U.S. air-carrier fatalities than any other weather hazard. A 1983 National Research Council (NRC) study (National Research Council, 1983) identified low-altitude wind shear as the cause of 27 aircraft accidents and incidents between 1964 and 1982. A total of 488 people died in seven of these accidents, 112 of them in the 1975 crash of Eastern Flight 66 at New York and 153 in the crash of Pan American Flight 759 at New Orleans in 1982. Since the NRC study was completed, the National Transportation Safety Board (NTSB) has investigated at least three more wind-shear incidents. One of these, the crash of Delta Flight 191 at Dallas/Fort Worth on August 2, 1985, took another 137 lives. Wind shear is not a serious hazard for aircraft enroute between airports at normal cruising altitudes, but low-level wind shear in the terminal area can be deadly for an aircraft on approach or departure. The most hazardous form of wind shear is the microburst, an outflow of air from a small-scale but powerful downward gush of cold, heavy air that can occur beneath a thunderstorm or rain shower or even in rain-free air under a harmless-looking cumulus cloud. As this downdraft reaches the earth's surface, it spreads out horizontally, like a stream of water sprayed straight down on a concrete driveway from a garden hose. An aircraft that flies through a microburst at low altitude first encounters a strong headwind, then a downdraft, and finally a tailwind that produces a sharp reduction in airspeed and a sudden loss of lift. This deadly sequence of events caused the fatal crash at Dallas/Fort Worth in 1985, as well as a number of other serious air-carrier accidents. Wind shear can also be associated with gust fronts, warm and cold fronts, and strong winds near the ground. It is important for pilots to be trained in recovery techniques to use if they are caught in wind shear. But a sudden windspeed change of at least 40 to 50 knots, which is not uncommon in microbursts, presents a serious hazard to jet airliners, and some microbursts simply are non-survivable. The only sure way to survive wind shear in the terminal area is to avoid it. However, flight crews do not have adequate information available today to predict or detect wind shear. The primary goal of the IDWR program is to provide pilots with an objective, quantitative assessment of the wind-shear hazard. The TDWR system also will improve operational efficiency and reduce delays in the terminal area by providing air traffic control supervisors with timely warnings of impending wind shifts resulting from gust fronts.
Summary
The Federal Aviation Administration (FAA) initiated the Terminal Doppler Weather Radar (TDWR) program in the mid-1980s in response to overwhelming scientific evidence that low-altitude wind shear had caused a number of major air-carrier accidents. The program is designed to develop a reliable automated system for detecting low-altitude wind shear in...
READ MORE