Beacon radar and TCAS reply rates: airborne measurements in the 1090 MHz band
January 29, 1997
Project Report
Author:
Published in:
MIT Lincoln Laboratory Report ATC-256
R&D Area:
R&D Group:
Summary
The Federal Aviation Administration (FAA) is in the process of developing Automatic Dependent Surveillance Broadcast (ADS-B) techniques. In one candidate system, GPS-Squitter, each aircraft periodically broadcasts messages, called "squitters," that report the aircraft's identification, position, and velocity. The position and velocity information may be obtained from the Global Positioning System (GPS) or some other navigation device. Reception of squitters can be used for several purposes, including surveillance of airborne aircraft by a ground station, surveillance of aircraft on the airport surface, and air-to-air surveillance... In developing the new system, it is necessary to know the rates of existing signal transmissions in the 1030 and 1090 MHz frequency bands, which are the beacon-radar and TCAS interrogation channels. The GPS-Squitter would be transmitted in the 1090 MHz band, like a reply. A key issue is the possibility of interference to squitter reception from existing signals in the 1090 MHz band....To validate these initial calculations, Lincoln Laboratory has made direct measurements of the rates of existing transmissions in both bands. These signals consist mainly of interrogations in the 1030 MHz band and replies in the 1090 MHz band. This report focuses on airborne measurements that have been made at 1090 MHz. (Not complete)