Publications

Refine Results

(Filters Applied) Clear All

Hyperspectral Microwave Atmospheric Sounder (HyMAS) - new capability in the CoSMIR/CoSSIR scanhead

Published in:
2015 IEEE Aerospace Conf., 7-14 March 2015.

Summary

MIT Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to adapt an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sensing, to develop and demonstrate a new capability in a hyperspectral microwave atmospheric sounder (HyMAS). This new sensor comprises a highly innovative intermediate frequency processor (IFP), that provides the filtering and digitization of 52 radiometric channels and the interoperable remote component (IRC) adapted to CoSMIR, CoSSIR, and HyMAS that stores and archives the data with time tagged calibration and navigation data. The first element of the work is the demonstration of a hyperspectral microwave receiver subsystem that was recently shown using a comprehensive simulation study to yield performance that substantially exceeds current state-of-the-art. Hyperspectral microwave sounders with ~100 channels offer temperature and humidity sounding improvements similar to those obtained when infrared sensors became hyperspectral. Hyperspectral microwave operation is achieved using independent RF antenna/receiver arrays that sample the same area/volume of the Earth's surface/atmosphere at slightly different frequencies and therefore synthesize a set of dense, finely spaced vertical weighting functions. The second, enabling element is the development of a compact 52-channel Intermediate Frequency processor module. A principal challenge of a hyperspectral microwave system is the size of the IF filter bank required for channelization. Large bandwidths are simultaneously processed, thus complicating the use of digital back-ends with associated high complexities, costs, and power requirements. Our approach involves passive filters implemented using low-temperature co-fired ceramic (LTCC) technology to achieve an ultra-compact module that can be easily integrated with existing RF front-end technology. This IF processor is applicable to other microwave sensing missions requiring compact IF spectrometry. The unit produces 52 channels of spectral data in a highly compact volume (
READ LESS

Summary

MIT Lincoln Laboratory and NASA's Goddard Space Flight Center have teamed to adapt an existing instrument platform, the CoSMIR/CoSSIR system for atmospheric sensing, to develop and demonstrate a new capability in a hyperspectral microwave atmospheric sounder (HyMAS). This new sensor comprises a highly innovative intermediate frequency processor (IFP), that provides...

READ MORE

Showing Results

1-1 of 1