Publications
Resonance fluorescence from an artificial atom in squeezed vacuum
Summary
Summary
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect the resulting fluorescence with high resolution enabled by a broadband traveling-wave parametric amplifier. We investigate the fluorescence spectra in the weak and strong driving regimes, observing...
A near-quantum-limited Josephson traveling-wave parametric amplifier
Summary
Summary
Detecting single photon level signals--carriers of both classical and quantum information--is particularly challenging for low-energy microwave frequency excitations. Here we introduce a superconducting amplifier based on a Josephson junction transmission line. Unlike current standing-wave parametric amplifiers, this traveling wave architecture robustly achieves high gain over a bandwidth of several gigahertz...