Publications

Refine Results

(Filters Applied) Clear All

Analysis of delay causality at Newark International Airport

Published in:
4th USA/Europe Air Traffic Management R&D Seminar, 3-7 December 2001.

Summary

Determining causes of aviation delay is essential for formulating and evaluating approaches to reduce air traffic delays. An analysis was conducted of large weather-related delays at Newark International Airport (EWR), which, located in the heart of the congested northeast corridor of the United States, is an airport with a significant number of delays. Convective weather and reduced ceiling and visibility were found to be the leading contributors to large delays at EWR between September 1998 and August 2001. It was found that 41% of the cumulative arrival delay (delay relative to schedule) on days in this period averaging more than 15 minutes of delay per arrival occurred on days characterized by convective weather either within or at considerable distances from the New York terminal area. Of the remaining delays, 28% occurred on days characterized by low ceiling/visibility conditions, while 14% occurred on fair weather days with high surface winds, and 2% were caused by distant non-convective storms. Known causes other than weather accounted for 9% of the delays, and causes were unknown for 6%. When delay types (airborne, gate, taxi -out etc.) were categorized by the type of weather causing the delay, it was found that: (1) departure delays (gate + taxi-out) were much larger than arrival delays for thunderstorms in the NY terminal area and (2) taxi-out delays were the dominant type when delays were caused by distant convective weather. The fraction of total delay time explained by pre-planned Ground Delay Programs (GDP) rose sharply during 2000, accounting for over 40% of total the arrival delay that year, and then decreased slightly in 2001. On days with thunderstorms in the NY TRACON, arrival and departure delays were significantly higher during the year (2000) that GDPs were used most frequently.
READ LESS

Summary

Determining causes of aviation delay is essential for formulating and evaluating approaches to reduce air traffic delays. An analysis was conducted of large weather-related delays at Newark International Airport (EWR), which, located in the heart of the congested northeast corridor of the United States, is an airport with a significant...

READ MORE

Delay causality and reduction at the New York City airports using terminal weather information systems

Published in:
Project Report ATC-291, MIT Lincoln Laboratory

Summary

Adverse weather accounts for the bulk of the aviation delays at the major New York City airports. In this report, we quantify: 1. Aviation delay reduction with an Integrated Terminal Weather System (ITWS) that incorporates the 30-60 minute predictions of convective storms generated by the Terminal Convective Weather Forecast (TCWF) algorithm, 2. Principal causes of aviation delays with the ITWS in operation, and 3. The extent to which the current delays are "avoidable". We find that improved decision making by the New York FAA users of ITWS provides an annual delay reduction of over 49,000 hours per year with a monetary value of over $150,000,000 per year. Convective weather was found to be the leading contributor to delays at Newark International Airport (EWR) between September 1998 and August 2000. It was found that 40% of the arrival delay in this study occurred in association with delay days characterized by convective weather both within and at considerable distances from the New York terminal area. Of the remaining delay, 27% occurred on days characterized by low ceiling/visibility conditions, while 16% occurred on fair weather days with high surface winds. We also concluded that many of the delays which occur with the current ITWS, over $1,500,000 in one case, could be avoided if the ITWS were extended to provide: 1. Predictions of thunderstorm decay, and 2. Predictions of the onset and ending of capacity limiting events such as low ceilings or high surface winds. These delay causality results are very important for studies of the effectiveness of changes made to the U.S. aviation system to reduce delays at airports such as Newark as well as for prioritizing FAA research and development expenditures.
READ LESS

Summary

Adverse weather accounts for the bulk of the aviation delays at the major New York City airports. In this report, we quantify: 1. Aviation delay reduction with an Integrated Terminal Weather System (ITWS) that incorporates the 30-60 minute predictions of convective storms generated by the Terminal Convective Weather Forecast (TCWF)...

READ MORE

Review of NYC ITWS during the September 7, 1998 severe weather event

Published in:
Project Report ATC-269, MIT Lincoln Laboratory

Summary

The New York City Integrated Terminal Weather System (ITWS) prototype became operational for the first time on August 30, 1998. Although this was near the end of the region's convective season, site staff were afforded a unique chance to assess the system's performance during Labor Day weekend on the afternoon of September 7 when a line of severe thunderstorms wreaked havoc over large areas of the Tri-state region. The storm with gusts reported as high as 80 mph, caused fatalities as boats overturned and trees fell on cars. Tornadoes were confirmed over New Jersey and Long Island, with major structural damage occurring in other areas as the result of strong straight-line winds and hail reported as large as 1.75 inches in diameter. Significant airport delays were experienced at the three major New York airports (over 600 flights delayed at least 15 minutes) and several hundred flights were cancelled. This report will assess the performance of ITWS and NEXRAD products during the time severe weather impacted the TRACON area, from about 1700 to 1930 UTC on September 7 (hereafter all times will be given in UTC). It will also discuss the synoptic weather setting and conclude with a section on the operational benefits users derived from ITWS on this day.
READ LESS

Summary

The New York City Integrated Terminal Weather System (ITWS) prototype became operational for the first time on August 30, 1998. Although this was near the end of the region's convective season, site staff were afforded a unique chance to assess the system's performance during Labor Day weekend on the afternoon...

READ MORE

Showing Results

1-3 of 3