Publications

Refine Results

(Filters Applied) Clear All

Data-driven evaluation of a flight re-route air traffic management decision-support tool

Published in:
Applied Human Factors and Ergonomics Conf., 21 July 2012.

Summary

Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making a re-route decision, which is one solution to mitigate airspace congestion, a display integrating convective weather information with departure demand predictions was prototyped jointly by MIT Lincoln Laboratory and the MITRE Corporation. The tool was deployed to twelve air traffic facilities involved in handling New York area flights for operational evaluation during the summer of 2011. Field observations, data mining and analyses were conducted under both fair and convective weather conditions. The system performance metrics chosen to evaluate the tool's effectiveness in supporting re-route decisions include predicted wheels-off error, predicted wheels-off forecast spread, and hourly departure fix demand forecast spread. The wheels-off prediction errors were near zero for half the flights across all days, but the highest 10% errors exceeded 30 minutes on convective weather days. The wheels-off forecast spread exceeded 30 minutes for 25% of forecasts on convective weather days. The hourly departure demand forecast spread was 9 flights or less for 50% of departures across all days except one. Six out of the seven days having the highest hourly departure demand forecast spreads occurred in the presence of long-lived weather impacts.
READ LESS

Summary

Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making...

READ MORE

Evaluation of the Integrated Departure Route Planning (IDRP) Tool 2011 prototype

Published in:
MIT Lincoln Laboratory Report ATC-388

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype was deployed in the summer of 2010 for a very limited field evaluation. A second, more comprehensive field evaluation of the "Phase 2" IDRP prototype was performed in the summer of 2011. The key focus of IDRP is the planning and implementation of departure reroutes to avoid weather impacts and volume congestion on departure fixes and routes. This evaluation assesses three facets of the IDRP prototype critical to the successful realization of its concept of operations: 1. performance of weather impact forecasts from RAPT and departure demand forecasts from tfmCore, 2. effectiveness of reroute decisions, and 3. potential impacts on procedures and decision making based on observations of IDRP use in the field. The evaluation concludes with suggestions for future enhancements to improve the performance and realization of potential benefits in operational use of IDRP.
READ LESS

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype...

READ MORE

Showing Results

1-2 of 2