Publications
The 1990 Airport Surveillance Radar Wind Shear Processor (ASR-WSP) operational test at Orlando International Airport
Summary
Summary
Lincoln Laboratory, under sponsorship from the Federal Aviation Administration (FAA), is conducting a program to evaluate the capability of the newest Airport Surveillance Radars (ASR-9) to detect hazardous weather phenomena -- in particular, low-altitude wind shear created by thunderstorm-generated microbursts and gust fronts. The ASR-9 could provide coverage at airports...
Divergence detection in wind fields estimated by an airport surveillance radar
Summary
Summary
This report assesses a technique for automatic detection of hazardous divergence in velocity fields estimated by an Airport Surveillance Radar (SAR). We evaluate a least-squares approach to radial divergence estimation through a performance analysis based on simulated data. That approach is compared to an existing decision-based radial shear finding method...
Wind shear detection with airport surveillance radars
Summary
Summary
Airport surveillance radars (ASR) utilize a broad, cosecant-squared elevation beam pattern, rapid azimuthal antenna scanning, and coherent pulsed-Doppler processing to detect and track approaching and departing aircraft. These radars, because of location, rapid scan rate, and direct air traffic control (ATC) data link, can also provide flight controllers with timely...
Low-altitude wind shear detection with airport surveillance radars: evaluation of 1987 field measurements
Summary
Summary
A field measurement program is being conducted to investigate the capabilities of airport surveillance radars (ASR) to detect low altitude wind shear (LAWS). This capability would require minor RF signal path modifications in existing ASRs and the addition of a signal processing channel to measure the radial velocity of precipitation...