Publications
Characterizing phonetic transformations and acoustic differences across English dialects
Summary
Summary
In this work, we propose a framework that automatically discovers dialect-specific phonetic rules. These rules characterize when certain phonetic or acoustic transformations occur across dialects. To explicitly characterize these dialect-specific rules, we adapt the conventional hidden Markov model to handle insertion and deletion transformations. The proposed framework is able to...
Analyzing and interpreting automatically learned rules across dialects
Summary
Summary
In this paper, we demonstrate how informative dialect recognition systems such as acoustic pronunciation model (APM) help speech scientists locate and analyze phonetic rules efficiently. In particular, we analyze dialect-specific characteristics automatically learned from APM across two American English dialects. We show that unsupervised rule retrieval performs similarly to supervised...
Informative dialect recognition using context-dependent pronunciation modeling
Summary
Summary
We propose an informative dialect recognition system that learns phonetic transformation rules, and uses them to identify dialects. A hidden Markov model is used to align reference phones with dialect specific pronunciations to characterize when and how often substitutions, insertions, and deletions occur. Decision tree clustering is used to find...
A linguistically-informative approach to dialect recognition using dialect-discriminating context-dependent phonetic models
Summary
Summary
We propose supervised and unsupervised learning algorithms to extract dialect discriminating phonetic rules and use these rules to adapt biphones to identify dialects. Despite many challenges (e.g., sub-dialect issues and no word transcriptions), we discovered dialect discriminating biphones compatible with the linguistic literature, while outperforming a baseline monophone system by...
Large-scale analysis of formant frequency estimation variability in conversational telephone speech
Summary
Summary
We quantify how the telephone channel and regional dialect influence formant estimates extracted from Wavesurfer in spontaneous conversational speech from over 3,600 native American English speakers. To the best of our knowledge, this is the largest scale study on this topic. We found that F1 estimates are higher in cellular...
Dialect recognition using adapted phonetic models
Summary
Summary
In this paper, we introduce a dialect recognition method that makes use of phonetic models adapted per dialect without phonetically labeled data. We show that this method can be implemented efficiently within an existing PRLM system. We compare the performance of this system with other state-of-the-art dialect recognition methods (both...