Publications

Refine Results

(Filters Applied) Clear All

Characterizing phonetic transformations and acoustic differences across English dialects

Published in:
IEEE Trans. Audio, Speech, and Lang. Process., Vol. 22, No. 1, January 2014, pp. 110-24.

Summary

In this work, we propose a framework that automatically discovers dialect-specific phonetic rules. These rules characterize when certain phonetic or acoustic transformations occur across dialects. To explicitly characterize these dialect-specific rules, we adapt the conventional hidden Markov model to handle insertion and deletion transformations. The proposed framework is able to convert pronunciation of one dialect to another using learned rules, recognize dialects using learned rules, retrieve dialect-specific regions, and refine linguistic rules. Potential applications of our proposed framework include computer-assisted language learning, sociolinguistics, and diagnosis tools for phonological disorders.
READ LESS

Summary

In this work, we propose a framework that automatically discovers dialect-specific phonetic rules. These rules characterize when certain phonetic or acoustic transformations occur across dialects. To explicitly characterize these dialect-specific rules, we adapt the conventional hidden Markov model to handle insertion and deletion transformations. The proposed framework is able to...

READ MORE

Analyzing and interpreting automatically learned rules across dialects

Published in:
INTERSPEECH 2012: 13th Annual Conf. of the Int. Speech Communication Assoc., 9-13 September 2012.

Summary

In this paper, we demonstrate how informative dialect recognition systems such as acoustic pronunciation model (APM) help speech scientists locate and analyze phonetic rules efficiently. In particular, we analyze dialect-specific characteristics automatically learned from APM across two American English dialects. We show that unsupervised rule retrieval performs similarly to supervised retrieval, indicating that APM is useful in practical applications, where word transcripts are often unavailable. We also demonstrate that the top-ranking rules learned from APM generally correspond to the linguistic literature, and can even pinpoint potential research directions to refine existing knowledge. Thus, the APM system can help phoneticians analyze rules efficiently by characterizing large amounts of data to postulate rule candidates, so they can reserve time to conduct more targeted investigations. Potential applications of informative dialect recognition systems include forensic phonetics and diagnosis of spoken language disorders.
READ LESS

Summary

In this paper, we demonstrate how informative dialect recognition systems such as acoustic pronunciation model (APM) help speech scientists locate and analyze phonetic rules efficiently. In particular, we analyze dialect-specific characteristics automatically learned from APM across two American English dialects. We show that unsupervised rule retrieval performs similarly to supervised...

READ MORE

Informative dialect recognition using context-dependent pronunciation modeling

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 22-27 May 2011, pp. 4396-4399.

Summary

We propose an informative dialect recognition system that learns phonetic transformation rules, and uses them to identify dialects. A hidden Markov model is used to align reference phones with dialect specific pronunciations to characterize when and how often substitutions, insertions, and deletions occur. Decision tree clustering is used to find context-dependent phonetic rules. We ran recognition tasks on 4 Arabic dialects. Not only do the proposed systems perform well on their own, but when fused with baselines they improve performance by 21-36% relative. In addition, our proposed decision-tree system beats the baseline monophone system in recovering phonetic rules by 21% relative. Pronunciation rules learned by our proposed system quantify the occurrence frequency of known rules, and suggest rule candidates for further linguistic studies.
READ LESS

Summary

We propose an informative dialect recognition system that learns phonetic transformation rules, and uses them to identify dialects. A hidden Markov model is used to align reference phones with dialect specific pronunciations to characterize when and how often substitutions, insertions, and deletions occur. Decision tree clustering is used to find...

READ MORE

A linguistically-informative approach to dialect recognition using dialect-discriminating context-dependent phonetic models

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 15 March 2010, pp. 5014-5017.

Summary

We propose supervised and unsupervised learning algorithms to extract dialect discriminating phonetic rules and use these rules to adapt biphones to identify dialects. Despite many challenges (e.g., sub-dialect issues and no word transcriptions), we discovered dialect discriminating biphones compatible with the linguistic literature, while outperforming a baseline monophone system by 7.5% (relative). Our proposed dialect discriminating biphone system achieves similar performance to a baseline all-biphone system despite using 25% fewer biphone models. In addition, our system complements PRLM (Phone Recognition followed by Language Modeling), verified by obtaining relative gains of 15-29% when fused with PRLM. Our work is an encouraging first step towards a linguistically-informative dialect recognition system, with potential applications in forensic phonetics, accent training, and language learning.
READ LESS

Summary

We propose supervised and unsupervised learning algorithms to extract dialect discriminating phonetic rules and use these rules to adapt biphones to identify dialects. Despite many challenges (e.g., sub-dialect issues and no word transcriptions), we discovered dialect discriminating biphones compatible with the linguistic literature, while outperforming a baseline monophone system by...

READ MORE

Large-scale analysis of formant frequency estimation variability in conversational telephone speech

Published in:
INTERSPEECH 2009, 6-10 September 2009.

Summary

We quantify how the telephone channel and regional dialect influence formant estimates extracted from Wavesurfer in spontaneous conversational speech from over 3,600 native American English speakers. To the best of our knowledge, this is the largest scale study on this topic. We found that F1 estimates are higher in cellular channels than those in landline, while F2 in general shows an opposite trend. We also characterized vowel shift trends in northern states in U.S.A. and compared them with the Northern city chain shift (NCCS). Our analysis is useful in forensic applications where it is important to distinguish between speaker, dialect, and channel characteristics.
READ LESS

Summary

We quantify how the telephone channel and regional dialect influence formant estimates extracted from Wavesurfer in spontaneous conversational speech from over 3,600 native American English speakers. To the best of our knowledge, this is the largest scale study on this topic. We found that F1 estimates are higher in cellular...

READ MORE

Dialect recognition using adapted phonetic models

Published in:
INTERSPEECH 2008, 22-26 September 2008, p. 763-766.

Summary

In this paper, we introduce a dialect recognition method that makes use of phonetic models adapted per dialect without phonetically labeled data. We show that this method can be implemented efficiently within an existing PRLM system. We compare the performance of this system with other state-of-the-art dialect recognition methods (both acoustic and token-based) on the NIST LRE 2007 English and Mandarin dialect recognition tasks. Our experimental results indicate that this system can perform better than baseline GMM and adapted PRLM systems, and also results in consistent gains of 15-23% when combined with other systems.
READ LESS

Summary

In this paper, we introduce a dialect recognition method that makes use of phonetic models adapted per dialect without phonetically labeled data. We show that this method can be implemented efficiently within an existing PRLM system. We compare the performance of this system with other state-of-the-art dialect recognition methods (both...

READ MORE

Showing Results

1-6 of 6