Publications

Refine Results

(Filters Applied) Clear All

Speech as a biomarker: opportunities, interoperability, and challenges

Published in:
Perspectives of the ASHA Special Interest Groups, Vo. 7, February 2022, pp. 276-83.

Summary

Purpose: Over the past decade, the signal processing and machine learning literature has demonstrated notable advancements in automated speech processing with the use of artificial intelligence for medical assessment and monitoring (e.g., depression, dementia, and Parkinson's disease, among others). Meanwhile, the clinical speech literature has identified several interpretable, theoretically motivated measures that are sensitive to abnormalities in the cognitive, linguistic, affective, motoric, and anatomical domains. Both fields have, thus, independently demonstrated the potential for speech to serve as an informative biomarker for detecting different psychiatric and physiological conditions. However, despite these parallel advancements, automated speech biomarkers have not been integrated into routine clinical practice to date. Conclusions: In this article, we present opportunities and challenges for adoption of speech as a biomarker in clinical practice and research. Toward clinical acceptance and adoption of speech-based digital biomarkers, we argue for the importance of several factors such as robustness, specificity, diversity, and physiological interpretability of speech analytics in clinical applications.
READ LESS

Summary

Purpose: Over the past decade, the signal processing and machine learning literature has demonstrated notable advancements in automated speech processing with the use of artificial intelligence for medical assessment and monitoring (e.g., depression, dementia, and Parkinson's disease, among others). Meanwhile, the clinical speech literature has identified several interpretable, theoretically motivated...

READ MORE

Relation of automatically extracted formant trajectories with intelligibility loss and speaking rate decline in amyotrophic lateral sclerosis

Summary

Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics of the first (F1) and second (F2) formant frequency trajectories and their first and second derivatives. Motivated by a possible link between components of formant dynamics and specific articulator movements, these features were also computed for low-pass and high-pass filtered formant trajectories. When compared to clinician-rated intelligibility and speaking rate assessments, F2 features, particularly mean F2 speed and a novel feature, mean F2 acceleration, were most strongly correlated with intelligibility and speaking rate, respectively (Spearman correlations > 0.70, p < 0.0001). These features also yielded the best predictions in regression experiments (r > 0.60, p < 0.0001). Comparable results were achieved using low-pass filtered F2 trajectory features, with higher correlations and lower prediction errors achieved for speaking rate over intelligibility. These findings suggest information can be exploited in specific frequency components of formant trajectories, with implications for automatic monitoring of ALS.
READ LESS

Summary

Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics...

READ MORE

Showing Results

1-2 of 2