Publications
Speaker recognition from coded speech and the effects of score normalization
Summary
Summary
We investigate the effect of speech coding on automatic speaker recognition when training and testing conditions are matched and mismatched. Experiments used standard speech coding algorithms (GSM, G.729, G.723, MELP) and a speaker recognition system based on Gaussian mixture models adapted from a universal background model. There is little loss...
Speaker recognition from coded speech in matched and mismatched conditions
Summary
Summary
We investigate the effect of speech coding on automatic speaker recognition when training and testing conditions are matched and mismatched. Experiments use standard speech coding algorithms (GSM, G.729, G.723, MELP) and a speaker recognition system based on Gaussian mixture models adapted from a universal background model. There is little loss...
Estimation of handset nonlinearity with application to speaker recognition
Summary
Summary
A method is described for estimating telephone handset nonlinearity by matching the spectral magnitude of the distorted signal to the output of a nonlinear channel model, driven by an undistorted reference. This "magnitude-only" representation allows the model to directly match unwanted speech formants that arise over nonlinear channels and that...
Speaker recognition using G.729 speech codec parameters
Summary
Summary
Experiments in Gaussian-mixture-model speaker recognition from mel-filter bank energies (MFBs) of the G.729 codec all-pole spectral envelope, showed significant performance loss relative to the standard mel-cepstral coefficients of G.729 synthesized (coded) speech. In this paper, we investigate two approaches to recover speaker recognition performance from G.729 parameters, rather than deriving...
Approaches to speaker detection and tracking in conversational speech
Summary
Summary
Two approaches to detecting and tracking speakers in multispeaker audio are described. Both approaches use an adapted Gaussian mixture model, universal background model (GMM-UBM) speaker detection system as the core speaker recognition engine. In one approach, the individual log-likelihood ratio scores, which are produced on a frame-by-frame basis by the...
Speaker verification using adapted Gaussian mixture models
Summary
Summary
In this paper we describe the major elements of MIT Lincoln Laboratory's Gaussian mixture model (GMM)-based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). The system is built around the likelihood ratio test for verification, using simple but effective GMMs for likelihood functions, a universal background...
Estimation of modulation based on FM-to-AM transduction: two-sinusoid case
Summary
Summary
A method is described for estimating the amplitude modulation (AM) and the frequency modulation (FM) of the components of a signal that consists of two AM-FM sinusoids. The approach is based on the transduction of FM to AM that occurs whenever a signal of varying frequency passes through a filter...
Shunting networks for multi-band AM-FM decomposition
Summary
Summary
We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of...
Speaker and language recognition using speech codec parameters
Summary
Summary
In this paper, we investigate the effect of speech coding on speaker and language recognition tasks. Three coders were selected to cover a wide range of quality and bit rates: GSM at 12.2 kb/s, G.729 at 8 kb/s, and G.723.1 at 5.3 kb/s. Our objective is to measure recognition performance...
Modeling of the glottal flow derivative waveform with application to speaker identification
Summary
Summary
An automatic technique for estimating and modeling the glottal flow derivative source waveform from speech, and applying the model parameters to speaker identification, is presented. The estimate of the glottal flow derivative is decomposed into coarse structure, representing the general flow shape, and fine structure, comprising aspiration and other perturbations...