Publications

Refine Results

(Filters Applied) Clear All

Side channel authenticity discriminant analysis for device class identification

Summary

Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of authentic parts. This paper examines the extent that power dissipation information can be used to separate unique classes of devices. A methodology for distinguishing device types is presented and tested on both simulation data of a custom circuit and empirical measurements of Microchip dsPIC33F microcontrollers. Experimental results show that power side channels contain significant distinguishing information to identify parts as authentic or suspect counterfeit.
READ LESS

Summary

Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of...

READ MORE

A key-centric processor architecture for secure computing

Published in:
2016 IEEE Int. Symp. on Hardware-Oriented Security and Trust, HOST 2016, 3-5 May 2016.

Summary

We describe a novel key-centric processor architecture in which each piece of data or code can be protected by encryption while at rest, in transit, and in use. Using embedded key management for cryptographic key handling, our processor permits mutually distrusting software written by different entities to work closely together without divulging algorithmic parameters or secret program data. Since the architecture performs encryption, decryption, and key management deeply within the processor hardware, the attack surface is minimized without significant impact on performance or ease of use. The current prototype implementation is based on the Sparc architecture and is highly applicable to small to medium-sized processing loads.
READ LESS

Summary

We describe a novel key-centric processor architecture in which each piece of data or code can be protected by encryption while at rest, in transit, and in use. Using embedded key management for cryptographic key handling, our processor permits mutually distrusting software written by different entities to work closely together...

READ MORE

Showing Results

1-2 of 2