Publications

Refine Results

(Filters Applied) Clear All

ReCANVo: A database of real-world communicative and affective nonverbal vocalizations

Published in:
Sci. Data, Vol. 10, No. 1, 5 August 2023, 523.

Summary

Nonverbal vocalizations, such as sighs, grunts, and yells, are informative expressions within typical verbal speech. Likewise, individuals who produce 0-10 spoken words or word approximations ("minimally speaking" individuals) convey rich affective and communicative information through nonverbal vocalizations even without verbal speech. Yet, despite their rich content, little to no data exists on the vocal expressions of this population. Here, we present ReCANVo: Real-World Communicative and Affective Nonverbal Vocalizations - a novel dataset of non-speech vocalizations labeled by function from minimally speaking individuals. The ReCANVo database contains over 7000 vocalizations spanning communicative and affective functions from eight minimally speaking individuals, along with communication profiles for each participant. Vocalizations were recorded in real-world settings and labeled in real-time by a close family member who knew the communicator well and had access to contextual information while labeling. ReCANVo is a novel database of nonverbal vocalizations from minimally speaking individuals, the largest available dataset of nonverbal vocalizations, and one of the only affective speech datasets collected amidst daily life across contexts.
READ LESS

Summary

Nonverbal vocalizations, such as sighs, grunts, and yells, are informative expressions within typical verbal speech. Likewise, individuals who produce 0-10 spoken words or word approximations ("minimally speaking" individuals) convey rich affective and communicative information through nonverbal vocalizations even without verbal speech. Yet, despite their rich content, little to no data...

READ MORE

Affective ratings of nonverbal vocalizations produced by minimally-speaking individuals: What do native listeners perceive?

Published in:
10th Intl. Conf. Affective Computing and Intelligent Interaction, ACII, 18-21 October 2022.

Summary

Individuals who produce few spoken words ("minimally-speaking" individuals) often convey rich affective and communicative information through nonverbal vocalizations, such as grunts, yells, babbles, and monosyllabic expressions. Yet, little data exists on the affective content of the vocal expressions of this population. Here, we present 78,624 arousal and valence ratings of nonverbal vocalizations from the online ReCANVo (Real-World Communicative and Affective Nonverbal Vocalizations) database. This dataset contains over 7,000 vocalizations that have been labeled with their expressive functions (delight, frustration, etc.) from eight minimally-speaking individuals. Our results suggest that raters who have no knowledge of the context or meaning of a nonverbal vocalization are still able to detect arousal and valence differences between different types of vocalizations based on Likert-scale ratings. Moreover, these ratings are consistent with hypothesized arousal and valence rankings for the different vocalization types. Raters are also able to detect arousal and valence differences between different vocalization types within individual speakers. To our knowledge, this is the first large-scale analysis of affective content within nonverbal vocalizations from minimally verbal individuals. These results complement affective computing research of nonverbal vocalizations that occur within typical verbal speech (e.g., grunts, sighs) and serve as a foundation for further understanding of how humans perceive emotions in sounds.
READ LESS

Summary

Individuals who produce few spoken words ("minimally-speaking" individuals) often convey rich affective and communicative information through nonverbal vocalizations, such as grunts, yells, babbles, and monosyllabic expressions. Yet, little data exists on the affective content of the vocal expressions of this population. Here, we present 78,624 arousal and valence ratings of...

READ MORE

Modeling real-world affective and communicative nonverbal vocalizations from minimally speaking individuals

Published in:
IEEE Trans. on Affect. Comput., Vol. 13, No. 4, October 2022, pp. 2238-53.

Summary

Nonverbal vocalizations from non- and minimally speaking individuals (mv*) convey important communicative and affective information. While nonverbal vocalizations that occur amidst typical speech and infant vocalizations have been studied extensively in the literature, there is limited prior work on vocalizations by mv* individuals. Our work is among the first studies of the communicative and affective information expressed in nonverbal vocalizations by mv* children and adults. We collected labeled vocalizations in real-world settings with eight mv* communicators, with communicative and affective labels provided in-the-moment by a close family member. Using evaluation strategies suitable for messy, real-world data, we show that nonverbal vocalizations can be classified by function (with 4- and 5-way classifications) with F1 scores above chance for all participants. We analyze labeling and data collection practices for each participating family, and discuss the classification results in the context of our novel real-world data collection protocol. The presented work includes results from the largest classification experiments with nonverbal vocalizations from mv* communicators to date.
READ LESS

Summary

Nonverbal vocalizations from non- and minimally speaking individuals (mv*) convey important communicative and affective information. While nonverbal vocalizations that occur amidst typical speech and infant vocalizations have been studied extensively in the literature, there is limited prior work on vocalizations by mv* individuals. Our work is among the first studies...

READ MORE

Showing Results

1-3 of 3