Publications

Refine Results

(Filters Applied) Clear All

Dissociating COVID-19 from other respiratory infections based on acoustic, motor coordination, and phonemic patterns

Published in:
Sci. Rep., Vol. 13, No. 1, January 2023, 1567.

Summary

In the face of the global pandemic caused by the disease COVID-19, researchers have increasingly turned to simple measures to detect and monitor the presence of the disease in individuals at home. We sought to determine if measures of neuromotor coordination, derived from acoustic time series, as well as phoneme-based and standard acoustic features extracted from recordings of simple speech tasks could aid in detecting the presence of COVID-19. We further hypothesized that these features would aid in characterizing the effect of COVID-19 on speech production systems. A protocol, consisting of a variety of speech tasks, was administered to 12 individuals with COVID-19 and 15 individuals with other viral infections at University Hospital Galway. From these recordings, we extracted a set of acoustic time series representative of speech production subsystems, as well as their univariate statistics. The time series were further utilized to derive correlation-based features, a proxy for speech production motor coordination. We additionally extracted phoneme-based features. These features were used to create machine learning models to distinguish between the COVID-19 positive and other viral infection groups, with respiratory- and laryngeal-based features resulting in the highest performance. Coordination-based features derived from harmonic-to-noise ratio time series from read speech discriminated between the two groups with an area under the ROC curve (AUC) of 0.94. A longitudinal case study of two subjects, one from each group, revealed differences in laryngeal based acoustic features, consistent with observed physiological differences between the two groups. The results from this analysis highlight the promise of using nonintrusive sensing through simple speech recordings for early warning and tracking of COVID-19.
READ LESS

Summary

In the face of the global pandemic caused by the disease COVID-19, researchers have increasingly turned to simple measures to detect and monitor the presence of the disease in individuals at home. We sought to determine if measures of neuromotor coordination, derived from acoustic time series, as well as phoneme-based...

READ MORE

Artificial intelligence for detecting COVID-19 with the aid of human cough, breathing and speech signals: scoping review

Summary

Background: Official tests for COVID-19 are time consuming, costly, can produce high false negatives, use up vital chemicals and may violate social distancing laws. Therefore, a fast and reliable additional solution using recordings of cough, breathing and speech data forpreliminary screening may help alleviate these issues. Objective: This scoping review explores how Artificial Intelligence (AI) technology aims to detect COVID-19 disease by using cough, breathing and speech recordings, as reported in theliterature. Here, we describe and summarize attributes of the identified AI techniques and datasets used for their implementation. Methods: A scoping review was conducted following the guidelines of PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews). Electronic databases (Google Scholar, Science Direct, and IEEE Xplore) were searched between 1st April 2020 and 15st August 2021. Terms were selected based on thetarget intervention (i.e., AI), the target disease (i.e., COVID-19) and acoustic correlates of thedisease (i.e., speech, breathing and cough). A narrative approach was used to summarize the extracted data. Results: 24 studies and 8 Apps out of the 86 retrieved studies met the inclusion criteria. Halfof the publications and Apps were from the USA. The most prominent AI architecture used was a convolutional neural network, followed by a recurrent neural network. AI models were mainly trained, tested and run-on websites and personal computers, rather than on phone apps. More than half of the included studies reported area-under-the-curve performance of greater than 0.90 on symptomatic and negative datasets while one study achieved 100% sensitivity in predicting asymptomatic COVID-19 for cough-, breathing- or speech-based acoustic features. Conclusions: The included studies show that AI has the potential to help detect COVID-19 using cough, breathing and speech samples. However, the proposed methods with some time and appropriate clinical testing would prove to be an effective method in detecting various diseases related to respiratory and neurophysiological changes in human body.
READ LESS

Summary

Background: Official tests for COVID-19 are time consuming, costly, can produce high false negatives, use up vital chemicals and may violate social distancing laws. Therefore, a fast and reliable additional solution using recordings of cough, breathing and speech data forpreliminary screening may help alleviate these issues. Objective: This scoping review...

READ MORE

Showing Results

1-2 of 2