Publications
Classes of functions with explicit best uniform approximations
January 1, 1982
Journal Article
Published in:
J. Approx. Theory, Vol. 34, No. 3, 1982, pp. 264-276.
Topic:
R&D group:
Summary
This paper concerns the construction of forms of the error function, en(x) = f(x)- p*n(x), where p*n is the best uniform polynomial approximation of degree n to a continuous function f on [-1, +l]. We show that it is always possible and, from the viewpoint of obtaining explicit results, expedient to write the error as en= a cos(n(Theta + phi), where x =cos Theta, |a|= En(f), the uniform norm of en(x), and the phase angle phi is a continuous function of Theta, depending on f and n. Our classes of explicit best approximations arise from a novel method of determining suitable phase angles in this representation of en(x).
Summary
This paper concerns the construction of forms of the error function, en(x) = f(x)- p*n(x), where p*n is the best uniform polynomial approximation of degree n to a continuous function f on [-1, +l]. We show that it is always possible and, from the viewpoint of obtaining explicit results, expedient...
READ MORE
On best approximation by truncated series
May 1, 1981
Journal Article
Published in:
J. Approx. Theory, Vol. 32, May 1981, pp. 82-84.
Topic:
R&D group:
Summary
Let T, be the Chebyshev polynomial of the first kind of degree k.
Summary
Let T, be the Chebyshev polynomial of the first kind of degree k.
READ MORE