Publications

Refine Results

(Filters Applied) Clear All

MIMO radar theory and experimental results

Published in:
38th Asilomar Conf. on Signals, Systems and Computers, Vol. 2, 7-10 November 2004, pp. 300-304.

Summary

The continuing progress of Moore's law has enabled the development of radar systems that simultaneously transmit and receive multiple coded waveforms from multiple phase centers and to process them in ways that have been unavailable in the past. The signals available for processing from these Multiple-Input Multiple-Output (MIMO) radar systems appear as spatial samples corresponding to the convolution of the transmit and receive aperture phase centers. The samples provide the ability to excite and measure the channel that consists of the transmit/receive propagation paths, the target and incidental scattering or clutter. These signals may be processed and combined to form an adaptive coherent transmit beam, or to search an extended area with high resolution in a single dwell. Adaptively combining the received data provides the effect of adaptively controlling the transmit beamshape and the spatial extent provides improved track-while-scan accuracy. This paper describes the theory behind the improved surveillance radar performance and illustrates this with measurements from experimental MIMO radars.
READ LESS

Summary

The continuing progress of Moore's law has enabled the development of radar systems that simultaneously transmit and receive multiple coded waveforms from multiple phase centers and to process them in ways that have been unavailable in the past. The signals available for processing from these Multiple-Input Multiple-Output (MIMO) radar systems...

READ MORE

Wideband aperture coherence processing for next generation radar (NexGen)

Summary

This report develops robust signal processing architectures and algorithms specifically designed to achieve multi-aperture coherence on transmit and receive. A key feature of our approach is the use of orthogonal radar waveforms that allow the monostatic and bistatic target returns to be separated at each receiver's matched filter output. By analyzing these returns, we may determine the appropriate transmit times and phases in order to cohere the various radar apertures using both narrowband and wideband waveforms. This process increases the array gain on receive to N2 instead of N for the single transmitter case. Furthermore, when hll coherence on transmit is achieved, the array gain is N3. The performance of our coherence algorithms is quantified using Monte Carlo simulations and compared to the Cramer-Rao lower bound. A computational complexity study shows that our aperture coherence algorithms are suitable for a realtime implementation on an SGI Origin 3000 multi-processor computer.
READ LESS

Summary

This report develops robust signal processing architectures and algorithms specifically designed to achieve multi-aperture coherence on transmit and receive. A key feature of our approach is the use of orthogonal radar waveforms that allow the monostatic and bistatic target returns to be separated at each receiver's matched filter output. By...

READ MORE

Showing Results

1-2 of 2